|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
EBSCO_ocn853752970 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130725s2000 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCF
|d OCLCQ
|d AGLDB
|d COO
|d STF
|d OCLCQ
|d VTS
|d M8D
|d SFB
|d OCLCO
|d OCLCQ
|
020 |
|
|
|a 9781107266780
|q (electronic bk.)
|
020 |
|
|
|a 1107266785
|q (electronic bk.)
|
020 |
|
|
|z 0521434084
|
020 |
|
|
|z 9780521434089
|
020 |
|
|
|z 0521584019
|
020 |
|
|
|z 9780521584012
|
029 |
1 |
|
|a DEBBG
|b BV043167896
|
029 |
1 |
|
|a DEBSZ
|b 421251220
|
029 |
1 |
|
|a GBVCP
|b 80481709X
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910052609805765
|
035 |
|
|
|a (OCoLC)853752970
|
050 |
|
4 |
|a QA377
|b .L37 2000eb
|
072 |
|
7 |
|a MAT
|x 007020
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.353
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lasiecka, I.
|q (Irena),
|d 1948-
|
245 |
1 |
0 |
|a Control theory for partial differential equations :
|b continuous and approximation theories.
|n 1,
|p Abstract parabolic systems /
|c Irena Lasiecka, Roberto Triggiani.
|
246 |
3 |
0 |
|a Abstract parabolic systems
|
260 |
|
|
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 2000.
|
300 |
|
|
|a 1 online resource :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Encyclopedia of mathematics and its applications ;
|v 74
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a ""Cover""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""0 Background""; ""0.1 Some Function Spaces Used in Chapter 1""; ""0.2 Regularity of the Variation of Parameter Formula When eAt Is a s.c. Analytic Semigroup""; ""0.2.1 Comments on the Space [X, Y]�""; ""0.2.2 Cases Where [D(A),Y]� =D((�A)�)""; ""0.2.3 Comments on the Proof of Proposition 0.1""; ""Properties (0.9), (0.14)""; ""Property (0.10)""; ""Properties (0.11), (0.12)""; ""Properties (0.13)""; ""0.3 The Extrapolation Space [D(A*)]'""
|
505 |
8 |
|
|a ""0.4 Abstract Setting for Volume I. The Operator LT in (1.1.9), or LsT in (1.4.1.6), of Chapter 1""""References and Bibliography""; ""1 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: Differential Riccati Equation""; ""1.1 Mathematical Setting and Formulation of the Problem""; ""1.2 Statement of Main Results""; ""1.2.1 The Nonsmoothing Case. Theorem 1.2.1.1: Existence of a Riccati Operator""; ""1.2.2 Two Smoothing Cases. Theorem 1.2.2.1: Classical Differential Riccati Equation and Uniqueness of the Riccati Operator. Theorem 1.2.2.2""; ""1.3 Orientation""
|
505 |
8 |
|
|a ""1.4 Proof of Theorem 1.2.1.1 with GLr Closed""""1.4.1 Optimality. Explicit Representation Formulas for the Optimal Pair {u0, y0}""; ""1.4.2 L2-Estimatesfor {u0,y0} and Zf-Estimate for Gy0(T; . ; x). Limit Relations as s â?? T""; ""1.4.3 Definition of Operators Î? (T, s ) and P(t) and First Properties""; ""1.4.4 Smoothing Properties of Ls and Ls* at t = T, and on Lp(s,T; . )-Spaces. Pointwise Estimates for u0(t, s; x), y0(t, s; x), and P(t)""; ""1.4.5 Smoothing Properties of Ls and Ls* at t = s. Pointwise Regularity of du0(t,s; x)/dt and dy0(t,s; x)/dt for s < t < T, x ε Y""
|
505 |
8 |
|
|a ""1.7 The Theory of Theorem 1.2.1.1 Is Sharp. Counterexamples When GLÏ? Is Not Closable""""1.7.1 Counterexample to the Existence of the Optimal Control u0 When GLÏ? Is Not Closable""; ""1.7.2 Assumption (1.2.1.26) Is Only Sufficientfor GLÏ? to Be Closed""; ""1.8 Extension to Unbounded Operators R and G""; ""1.8.1 The Case Where R E £(1)( (â€?A)Î?); Z) and G E £(D((â€?A)Î?); Zf), 0""; ""1A Proof of Lemma 1.5.1.l(iii)""; ""Notes on Chapter 1""
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Differential equations, Partial.
|
650 |
|
0 |
|a Control theory.
|
650 |
|
6 |
|a Équations aux dérivées partielles.
|
650 |
|
6 |
|a Théorie de la commande.
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x Partial.
|2 bisacsh
|
650 |
|
7 |
|a Control theory.
|2 fast
|0 (OCoLC)fst00877085
|
650 |
|
7 |
|a Differential equations, Partial.
|2 fast
|0 (OCoLC)fst00893484
|
700 |
1 |
|
|a Triggiani, R.
|q (Roberto),
|d 1942-
|
776 |
0 |
8 |
|i Print version:
|a Lasiecka, I. (Irena), 1948-
|t Control theory for partial differential equations.
|d Cambridge ; New York : Cambridge University Press, 2000
|z 0521434084
|w (DLC) 99011617
|w (OCoLC)40682527
|
830 |
|
0 |
|a Encyclopedia of mathematics and its applications ;
|v v. 74.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=589305
|z Texto completo
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 589305
|
994 |
|
|
|a 92
|b IZTAP
|