Cargando…

Control theory for partial differential equations : continuous and approximation theories. 1, Abstract parabolic systems /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lasiecka, I. (Irena), 1948-
Otros Autores: Triggiani, R. (Roberto), 1942-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2000.
Colección:Encyclopedia of mathematics and its applications ; v. 74.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn853752970
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130725s2000 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCF  |d OCLCQ  |d AGLDB  |d COO  |d STF  |d OCLCQ  |d VTS  |d M8D  |d SFB  |d OCLCO  |d OCLCQ 
020 |a 9781107266780  |q (electronic bk.) 
020 |a 1107266785  |q (electronic bk.) 
020 |z 0521434084 
020 |z 9780521434089 
020 |z 0521584019 
020 |z 9780521584012 
029 1 |a DEBBG  |b BV043167896 
029 1 |a DEBSZ  |b 421251220 
029 1 |a GBVCP  |b 80481709X 
029 1 |a DKDLA  |b 820120-katalog:9910052609805765 
035 |a (OCoLC)853752970 
050 4 |a QA377  |b .L37 2000eb 
072 7 |a MAT  |x 007020  |2 bisacsh 
082 0 4 |a 515/.353  |2 23 
049 |a UAMI 
100 1 |a Lasiecka, I.  |q (Irena),  |d 1948- 
245 1 0 |a Control theory for partial differential equations :  |b continuous and approximation theories.  |n 1,  |p Abstract parabolic systems /  |c Irena Lasiecka, Roberto Triggiani. 
246 3 0 |a Abstract parabolic systems 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2000. 
300 |a 1 online resource :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of mathematics and its applications ;  |v 74 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a ""Cover""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""0 Background""; ""0.1 Some Function Spaces Used in Chapter 1""; ""0.2 Regularity of the Variation of Parameter Formula When eAt Is a s.c. Analytic Semigroup""; ""0.2.1 Comments on the Space [X, Y]Â?""; ""0.2.2 Cases Where [D(A),Y]Â? =D((â€?A)Â?)""; ""0.2.3 Comments on the Proof of Proposition 0.1""; ""Properties (0.9), (0.14)""; ""Property (0.10)""; ""Properties (0.11), (0.12)""; ""Properties (0.13)""; ""0.3 The Extrapolation Space [D(A*)]'"" 
505 8 |a ""0.4 Abstract Setting for Volume I. The Operator LT in (1.1.9), or LsT in (1.4.1.6), of Chapter 1""""References and Bibliography""; ""1 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: Differential Riccati Equation""; ""1.1 Mathematical Setting and Formulation of the Problem""; ""1.2 Statement of Main Results""; ""1.2.1 The Nonsmoothing Case. Theorem 1.2.1.1: Existence of a Riccati Operator""; ""1.2.2 Two Smoothing Cases. Theorem 1.2.2.1: Classical Differential Riccati Equation and Uniqueness of the Riccati Operator. Theorem 1.2.2.2""; ""1.3 Orientation"" 
505 8 |a ""1.4 Proof of Theorem 1.2.1.1 with GLr Closed""""1.4.1 Optimality. Explicit Representation Formulas for the Optimal Pair {u0, y0}""; ""1.4.2 L2-Estimatesfor {u0,y0} and Zf-Estimate for Gy0(T; . ; x). Limit Relations as s â?? T""; ""1.4.3 Definition of Operators Î? (T, s ) and P(t) and First Properties""; ""1.4.4 Smoothing Properties of Ls and Ls* at t = T, and on Lp(s,T; . )-Spaces. Pointwise Estimates for u0(t, s; x), y0(t, s; x), and P(t)""; ""1.4.5 Smoothing Properties of Ls and Ls* at t = s. Pointwise Regularity of du0(t,s; x)/dt and dy0(t,s; x)/dt for s < t < T, x ε Y"" 
505 8 |a ""1.7 The Theory of Theorem 1.2.1.1 Is Sharp. Counterexamples When GLÏ? Is Not Closable""""1.7.1 Counterexample to the Existence of the Optimal Control u0 When GLÏ? Is Not Closable""; ""1.7.2 Assumption (1.2.1.26) Is Only Sufficientfor GLÏ? to Be Closed""; ""1.8 Extension to Unbounded Operators R and G""; ""1.8.1 The Case Where R E £(1)( (â€?A)Î?); Z) and G E £(D((â€?A)Î?); Zf), 0""; ""1A Proof of Lemma 1.5.1.l(iii)""; ""Notes on Chapter 1"" 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Differential equations, Partial. 
650 0 |a Control theory. 
650 6 |a Équations aux dérivées partielles. 
650 6 |a Théorie de la commande. 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a Control theory.  |2 fast  |0 (OCoLC)fst00877085 
650 7 |a Differential equations, Partial.  |2 fast  |0 (OCoLC)fst00893484 
700 1 |a Triggiani, R.  |q (Roberto),  |d 1942- 
776 0 8 |i Print version:  |a Lasiecka, I. (Irena), 1948-  |t Control theory for partial differential equations.  |d Cambridge ; New York : Cambridge University Press, 2000  |z 0521434084  |w (DLC) 99011617  |w (OCoLC)40682527 
830 0 |a Encyclopedia of mathematics and its applications ;  |v v. 74. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=589305  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 589305 
994 |a 92  |b IZTAP