Cargando…

Complexity : knots, colourings, and counting /

These notes are based on a series of lectures given at the Advanced Research Institute of Discrete Applied Mathematics held at Rutgers University. Their aim is to link together algorithmic problems arising in knot theory, statistical physics and classical combinatorics. Apart from the theory of comp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Welsh, D. J. A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1993.
Colección:London Mathematical Society lecture note series ; 186.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn852899028
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130716s1993 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d CAMBR  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d HEBIS  |d OCLCO  |d UAB  |d VTS  |d REC  |d STF  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d YDX  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 890250238  |a 1100997747  |a 1162190341  |a 1241830854  |a 1242477729 
020 |a 9781107088696  |q (electronic bk.) 
020 |a 1107088690  |q (electronic bk.) 
020 |a 9780511752506  |q (electronic bk.) 
020 |a 0511752504  |q (electronic bk.) 
020 |a 1107100577  |q (electronic bk.) 
020 |a 9781107100572  |q (electronic bk.) 
020 |a 1139884980 
020 |a 9781139884983 
020 |a 1107091632 
020 |a 9781107091634 
020 |a 1107103088 
020 |a 9781107103085 
020 |a 1107094909 
020 |a 9781107094901 
020 |a 0521457408 
020 |a 9780521457408 
020 |z 0521457408 
020 |z 9780521457408 
024 3 |a 9780521457408 
029 1 |a DEBBG  |b BV043092065 
029 1 |a DEBSZ  |b 421262435 
029 1 |a GBVCP  |b 804798842 
029 1 |a NZ1  |b 15741715 
035 |a (OCoLC)852899028  |z (OCoLC)890250238  |z (OCoLC)1100997747  |z (OCoLC)1162190341  |z (OCoLC)1241830854  |z (OCoLC)1242477729 
050 4 |a QA267.7  |b .W47 1993eb 
055 8 |a QA612.2  |b .W46 1993 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a MAT  |x 018000  |2 bisacsh 
082 0 4 |a 511.3  |2 22 
084 |a 31.61  |2 bcl 
084 |a 31.10  |2 bcl 
084 |a 31.12  |2 bcl 
084 |a 31.80  |2 bcl 
084 |a 54.10  |2 bcl 
084 |a P 69  |2 blsrissc 
084 |a *68-02  |2 msc 
084 |a 03D15  |2 msc 
084 |a 57M25  |2 msc 
084 |a 68Q15  |2 msc 
084 |a 68R05  |2 msc 
084 |a 82B43  |2 msc 
049 |a UAMI 
100 1 |a Welsh, D. J. A. 
245 1 0 |a Complexity :  |b knots, colourings, and counting /  |c D.J.A. Welsh. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1993. 
300 |a 1 online resource (viii, 163 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London mathematical society lecture note series ;  |v 186 
504 |a Includes bibliographical references (pages 143-159) and index. 
588 0 |a Print version record. 
520 |a These notes are based on a series of lectures given at the Advanced Research Institute of Discrete Applied Mathematics held at Rutgers University. Their aim is to link together algorithmic problems arising in knot theory, statistical physics and classical combinatorics. Apart from the theory of computational complexity concerned with enumeration problems, introductions are given to several of the topics treated, such as combinatorial knot theory, randomised approximation algorithms, percolation and random cluster models. To researchers in discrete mathematics, computer science and statistical physics, this book will be of great interest, but any non-expert should find it an appealing guide to a very active area of research. 
505 2 |a 1. The complexity of enumeration -- 1.1. Basics of complexity -- 1.2. Counting problems -- 1.3. # P-complete problems -- 1.4. Decision easy, counting hard -- 1.5. The Permanent -- 1.6. Hard enumeration problems not thought to be # P-complete -- 1.7. Self-avoiding walks -- 1.8. Toda's theorems -- 2. Knots and links -- 2.2. Tait colourings -- 2.3. Classifying knots -- 2.4. Braids and the braid group -- 2.5. The braid index and the Seifert graph of a link -- 2.6. Enzyme action -- 2.7. The number of knots and links -- 2.8. The topology of polymers -- 3. Colourings, flows and polynomials -- 3.1. The chromatic polynomial -- 3.2. The Whitney-Tutte polynomials -- 3.3. Tutte Grothendieck invariants -- 3.4. Reliability theory -- 3.5. Flows over an Abelian group -- 3.6. Ice models -- 3.7. A catalogue of invariants -- 4. Statistical physics -- 4.1. Percolation processes -- 4.2. The Ising model -- 4.3. Combinatorial interpretations -- 4.4. The Ashkin-Teller-Potts model -- 4.5. The random cluster model -- 4.6. Percolation in the random cluster model -- 5. Link polynomials and the Tait conjectures -- 5.1. The Alexander polynomial -- 5.2. The Jones polynomial and Kauffman bracket -- 5.3. The Homfly polynomial -- 5.4. The Kauffman 2-variable polynomial -- 5.5. The Tait conjectures -- 5.6. Thistlethwaite's nontriviality criterion -- 5.7. Link invariants and statistical mechanics -- 6. Complexity questions -- 6.1. Computations in knot theory -- 6.2. The complexity of the Tutte plane -- 6.3. The complexity of knot polynomials -- 6.4. The complexity of the Ising model -- 6.5. Reliability and other computations -- 7. The complexity of uniqueness and parity -- 7.1. Unique solutions -- 7.2. Unambiguous machines and one-way functions -- 7.3. The Valiant-Vazirani theorem -- 7.4. Hard counting problems not parsimonious with SAT -- 7.5. The curiosity of parity -- 7.6. Toda's theorem on parity -- 8. Approximation and randomisation -- 8.1. Metropolis methods -- 8.2. Approximating to within a ratio -- 8.3. Generating solutions at random -- 8.4. Rapidly mixing Markov chains -- 8.5. Computing the volume of a convex body -- 8.6. Approximations and the Ising model. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Computational complexity. 
650 0 |a Knot theory. 
650 0 |a Combinatorial analysis. 
650 0 |a Statistical physics. 
650 6 |a Complexité de calcul (Informatique) 
650 6 |a Théorie des nœuds. 
650 6 |a Analyse combinatoire. 
650 6 |a Physique statistique. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Logic.  |2 bisacsh 
650 7 |a Combinatorial analysis  |2 fast 
650 7 |a Computational complexity  |2 fast 
650 7 |a Knot theory  |2 fast 
650 7 |a Statistical physics  |2 fast 
650 7 |a Komplexitätstheorie  |2 gnd 
650 7 |a Graphentheorie  |2 gnd 
650 1 7 |a Knopentheorie.  |2 gtt 
650 1 7 |a Complexiteit.  |2 gtt 
650 7 |a Complexité de calcul (Informatique)  |2 ram 
650 7 |a Noeud, théorie du.  |2 ram 
650 7 |a Lien, théorie du.  |2 ram 
776 0 8 |i Print version:  |a Welsh, D.J.A.  |t Complexity.  |d Cambridge ; New York : Cambridge University Press, 1993  |z 0521457408  |w (DLC) 94104623  |w (OCoLC)29845266 
830 0 |a London Mathematical Society lecture note series ;  |v 186. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569294  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25454061 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385346 
938 |a ebrary  |b EBRY  |n ebr10733625 
938 |a EBSCOhost  |b EBSC  |n 569294 
938 |a YBP Library Services  |b YANK  |n 10866271 
938 |a YBP Library Services  |b YANK  |n 10862031 
938 |a YBP Library Services  |b YANK  |n 10869768 
938 |a YBP Library Services  |b YANK  |n 11063901 
994 |a 92  |b IZTAP