Cargando…

Minkowski geometry /

Minkowski geometry is a non-Euclidean geometry in a finite number of dimensions that is different from elliptic and hyperbolic geometry (and from the Minkowskian geometry of spacetime). Here the linear structure is the same as the Euclidean one but distance is not "uniform" in all directio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Thompson, Anthony C., 1937-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1996.
Colección:Encyclopedia of mathematics and its applications ; v. 63.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn852898451
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130716s1996 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d CAMBR  |d IDEBK  |d E7B  |d OCLCF  |d OCLCQ  |d AGLDB  |d OCLCQ  |d HEBIS  |d OCLCO  |d VTS  |d STF  |d M8D  |d UKAHL  |d INARC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 843761719  |a 1150797408 
020 |a 9781107088269  |q (electronic bk.) 
020 |a 1107088267  |q (electronic bk.) 
020 |a 9781107325845  |q (electronic bk.) 
020 |a 1107325846  |q (electronic bk.) 
020 |z 052140472X 
020 |z 9780521404723 
029 1 |a DEBBG  |b BV043091391 
029 1 |a DEBSZ  |b 421261943 
029 1 |a GBVCP  |b 804795568 
035 |a (OCoLC)852898451  |z (OCoLC)843761719  |z (OCoLC)1150797408 
050 4 |a QA685  |b .T48 1996eb 
072 7 |a MAT  |x 012020  |2 bisacsh 
082 0 4 |a 516.3/74  |2 22 
084 |a 31.52  |2 bcl 
049 |a UAMI 
100 1 |a Thompson, Anthony C.,  |d 1937- 
245 1 0 |a Minkowski geometry /  |c A.C. Thompson. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1996. 
300 |a 1 online resource (xvi, 346 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of mathematics and its applications ;  |v v. 63 
504 |a Includes bibliographical references (pages 313-330) and indexes. 
505 0 |a The algebraic properties of linear spaces and convex sets -- 1. Norms and norm topologies -- 2. Convex bodies -- 3. Comparisons and contrasts with Euclidean space -- 4. Two-dimensional Minkowski spaces -- 5. The concept of area and content -- 6. Special properties of the Holmes-Thompson definition -- 7. Special properties of the Busemann definition -- 8. Trigonometry -- 9. Various numerical parameters -- 10. Fifty problems. 
520 |a Minkowski geometry is a non-Euclidean geometry in a finite number of dimensions that is different from elliptic and hyperbolic geometry (and from the Minkowskian geometry of spacetime). Here the linear structure is the same as the Euclidean one but distance is not "uniform" in all directions. Instead of the usual sphere in Euclidean space, the unit ball is a general symmetric convex set. Therefore, although the parallel axiom is valid, Pythagoras' theorem is not 
520 8 |a This book begins by presenting the topological properties of Minkowski spaces, including the existence and essential uniqueness of Haar measure, followed by the fundamental metric properties - the group of isometries, the existence of certain bases and the existence of the Lowner ellipsoid. This is followed by characterizations of Euclidean space among normed spaces and a full treatment of two-dimensional spaces. The three central chapters present the theory of area and volume in normed spaces. The author describes the fascinating geometric interplay among the isoperimetrix (the convex body which solves the isoperimetric problem), the unit ball and their duals, and the ways in which various roles of the ball in Euclidean space are divided among them. The next chapter deals with trigonometry in Minkowski spaces and the last one takes a brief look at a number of numerical parameters associated with a normed space, including J.J. 
520 8 |a Schaffer's ideas on the intrinsic geometry of the unit sphere. Each chapter ends with a section of historical notes and the book ends with a list of 50 unsolved problems. 
520 8 |a . Minkowski Geometry will appeal to students and researchers interested in geometry, convexity theory and functional analysis. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Minkowski geometry. 
650 6 |a Géométrie de Minkowski. 
650 7 |a MATHEMATICS  |x Geometry  |x Analytic.  |2 bisacsh 
650 7 |a Minkowski geometry  |2 fast 
650 7 |a Geometrie  |2 gnd 
650 7 |a Minkowski-Raum  |2 gnd 
650 1 7 |a Minkowski-ruimte.  |2 gtt 
650 7 |a Minkowski, Géométrie de.  |2 ram 
776 0 8 |i Print version:  |a Thompson, Anthony C., 1937-  |t Minkowski geometry.  |d Cambridge ; New York : Cambridge University Press, 1996  |z 052140472X  |w (DLC) 95046491  |w (OCoLC)33442682 
830 0 |a Encyclopedia of mathematics and its applications ;  |v v. 63. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569342  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385475 
938 |a ebrary  |b EBRY  |n ebr10733665 
938 |a EBSCOhost  |b EBSC  |n 569342 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26006760 
938 |a Internet Archive  |b INAR  |n minkowskigeometr0000thom 
994 |a 92  |b IZTAP