Character theory for the odd order theorem /
The famous and important theorem of W. Feit and J.G. Thompson states that every group of odd order is solvable, and the proof of this has roughly two parts. The first part appeared in Bender and Glauberman's Local Analysis for the Odd Order Theorem which was number 188 in this series. This book...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Francés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
2000.
|
Colección: | London Mathematical Society lecture note series ;
272. |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | EBSCO_ocn852896275 | ||
003 | OCoLC | ||
005 | 20231017213018.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130716s2000 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d IDEBK |d E7B |d CAMBR |d OCLCF |d OCLCQ |d AGLDB |d XFH |d OCLCO |d OCLCQ |d UAB |d OCLCQ |d VTS |d OCLCA |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d UKAHL |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 994597521 |a 1162031802 |a 1167124428 |a 1241838663 |a 1242478659 | ||
020 | |a 9781107089198 |q (electronic bk.) | ||
020 | |a 1107089190 |q (electronic bk.) | ||
020 | |a 9780511565861 |q (electronic bk.) | ||
020 | |a 0511565860 |q (electronic bk.) | ||
020 | |a 1299748937 | ||
020 | |a 9781299748934 | ||
020 | |a 1139885502 | ||
020 | |a 9781139885508 | ||
020 | |a 1107103509 | ||
020 | |a 9781107103504 | ||
020 | |a 1107095395 | ||
020 | |a 9781107095397 | ||
020 | |a 1107092159 | ||
020 | |a 9781107092150 | ||
020 | |a 1107101026 | ||
020 | |a 9781107101029 | ||
020 | |z 052164660X | ||
020 | |z 9780521646604 | ||
029 | 1 | |a DEBBG |b BV043097653 | |
029 | 1 | |a DEBSZ |b 421262559 | |
029 | 1 | |a GBVCP |b 804794154 | |
035 | |a (OCoLC)852896275 |z (OCoLC)994597521 |z (OCoLC)1162031802 |z (OCoLC)1167124428 |z (OCoLC)1241838663 |z (OCoLC)1242478659 | ||
041 | 1 | |a eng |h fre | |
050 | 4 | |a QA177 |b .P48 2000eb | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 0 | 4 | |a 511/.2 |2 22 |
084 | |a 31.21 |2 bcl | ||
049 | |a UAMI | ||
100 | 1 | |a Peterfalvi, Thomas. | |
245 | 1 | 0 | |a Character theory for the odd order theorem / |c Thomas Peterfalvi ; translated by Robert Sandling. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2000. | ||
300 | |a 1 online resource (vii, 154 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 272 | |
500 | |a "First published in French by Astérisque as Théorie des charactéres dans le théoreme de Feit et Thompson and Le théorem de Bender-Suzuki II"--Title page verso | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | 0 | |g pt. I. |t Character Theory for the Odd Order Theorem. |g 1. |t Preliminary Results from Character Theory. |g 2. |t The Dade Isometry. |g 3. |t T1-Subsets with Cyclic Normalizers. |g 4. |t The Dade Isometry for a Certain Type of Subgroup. |g 5. |t Coherence. |g 6. |t Some Coherence Theorems. |g 7. |t Non-existence of a Certain Type of Group of Odd Order. |g 8. |t Structure of a Minimal Simple Group of Odd Order. |g 9. |t On the Maximal Subgroups of G of Types II, III and IV. |g 10. |t Maximal Subgroups of Types III, IV and V. |g 11. |t Maximal Subgroups of Types III and IV. |g 12. |t Maximal Subgroups of Type I. |g 13. |t The Subgroups S and T. |g 14. |t Non-existence of G -- |g pt. II. |t A Theorem of Suzuki. |g Ch. I. |t General Properties of G. |g 1. |t Consequences of Hypothesis (A1). |g 2. |t The Structure of Q and of K. |
588 | 0 | |a Print version record. | |
546 | |a English. | ||
520 | |a The famous and important theorem of W. Feit and J.G. Thompson states that every group of odd order is solvable, and the proof of this has roughly two parts. The first part appeared in Bender and Glauberman's Local Analysis for the Odd Order Theorem which was number 188 in this series. This book, first published in 2000, provides the character-theoretic second part and thus completes the proof. Also included here is a revision of a theorem of Suzuki on split BN-pairs of rank one; a prerequisite for the classification of finite simple groups. All researchers in group theory should have a copy of this book in their library. | ||
590 | |a eBooks on EBSCOhost |b EBSCO eBook Subscription Academic Collection - Worldwide | ||
650 | 0 | |a Feit-Thompson theorem. | |
650 | 0 | |a Finite groups. | |
650 | 0 | |a Characters of groups. | |
650 | 6 | |a Théorème de Feit et Thompson. | |
650 | 6 | |a Groupes finis. | |
650 | 6 | |a Caractères de groupes. | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Characters of groups |2 fast | |
650 | 7 | |a Feit-Thompson theorem |2 fast | |
650 | 7 | |a Finite groups |2 fast | |
650 | 7 | |a Charakter |g Gruppentheorie |2 gnd | |
650 | 7 | |a Feit-Thompson-Theorem |2 gnd | |
650 | 7 | |a Endliche Gruppe |2 gnd | |
650 | 1 | 7 | |a Eindige groepen. |2 gtt |
650 | 1 | 7 | |a Characters. |2 gtt |
650 | 7 | |a Grupos finitos. |2 larpcal | |
650 | 7 | |a Álgebra. |2 larpcal | |
650 | 7 | |a Feit-Thompson, Théorème de. |2 ram | |
650 | 7 | |a Groupes finis. |2 ram | |
650 | 7 | |a Caractères de groupes. |2 ram | |
776 | 0 | 8 | |i Print version: |a Peterfalvi, Thomas. |t Character theory for the odd order theorem. |d Cambridge ; New York : Cambridge University Press, 2000 |z 052164660X |w (DLC) 99025752 |w (OCoLC)41090735 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 272. | |
856 | 4 | 0 | |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569282 |z Texto completo |
938 | |a Internet Archive |b INAR |n charactertheoryf0000pete | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25473532 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385394 | ||
938 | |a ebrary |b EBRY |n ebr10733646 | ||
938 | |a EBSCOhost |b EBSC |n 569282 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26006778 | ||
994 | |a 92 |b IZTAP |