Nonequilibrium many-body theory of quantum systems : a modern introduction /
"The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quant...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2013.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- ""Contents""; ""Preface""; ""List of abbreviations and acronyms""; ""Fundamental constants and basic relations""; ""1 Second quantization""; ""1.1 Quantum mechanics of one particle""; ""1.2 Quantum mechanics of many particles""; ""1.3 Quantum mechanics of many identical particles""; ""1.4 Field operators""; ""1.5 General basis states""; ""1.6 Hamiltonian in second quantization""; ""1.7 Density matrices and quantum averages""; ""2 Getting familiar with second quantization: model Hamiltonians""; ""2.1 Model Hamiltonians""; ""2.2 Pariser�Parr�Pople model""; ""2.3 Noninteracting models""
- ""2.3.1 Bloch theorem and band structure""""2.3.2 Fano model""; ""2.4 Hubbard model""; ""2.4.1 Particle�hole symmetry: application to the Hubbard dimer""; ""2.5 Heisenberg model""; ""2.6 BCS model and the exact Richardson solution""; ""2.7 Holstein model""; ""2.7.1 Peierls instability""; ""2.7.2 Lang�Firsov transformation: the heavy polaron""; ""3 Time-dependent problems and equations of motion""; ""3.1 Introduction""; ""3.2 Evolution operator""; ""3.3 Equations of motion for operators in the Heisenberg picture""; ""3.4 Continuity equation: paramagnetic and diamagnetic currents""
- ""3.5 Lorentz Force""""4 The contour idea""; ""4.1 Time-dependent quantum averages""; ""4.2 Time-dependent ensemble averages""; ""4.3 Initial equilibrium and adiabatic switching""; ""4.4 Equations of motion on the contour""; ""4.5 Operator correlators on the contour""; ""5 Many-particle Green�s functions""; ""5.1 Martin�Schwinger hierarchy""; ""5.2 Truncation of the hierarchy""; ""5.3 Exact solution of the hierarchy from Wick�s theorem""; ""5.4 Finite and zero-temperature formalism from the exact solution""; ""5.5 Langreth rules""; ""6 One-particle Green�s function""
- ""6.1 What can we learn from G?""""6.1.1 The inevitable emergence of memory""; ""6.1.2 Matsubara Green�s function and initial preparations""; ""6.1.3 Lesser/greater Green�s function: relaxation and quasi-particles""; ""6.2 Noninteracting Green�s function""; ""6.2.1 Matsubara component""; ""6.2.2 Lesser and greater components""; ""6.2.3 All other components and a useful exercise""; ""6.3 Interacting Green�s function and Lehmann representation""; ""6.3.1 Steady-states, persistent oscillations,initial-state dependence""
- ""6.3.2 Fluctuation�dissipation theorem and otherexact properties""""6.3.3 Spectral function and probability interpretation""; ""6.3.4 Photoemission experiments and interaction effects""; ""6.4 Total energy from the Galitskii�Migdal formula""; ""7 Mean field approximations""; ""7.1 Introduction""; ""7.2 Hartree approximation""; ""7.2.1 Hartree equations""; ""7.2.2 Electron gas""; ""7.2.3 Quantum discharge of a capacitor""; ""7.3 Hartree�Fock approximation""; ""7.3.1 Hartree�Fock equations""; ""7.3.2 Coulombic electron gas and spin-polarized solutions""