|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBSCO_ocn850149030 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130625s2010 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d OCLCO
|d DEBSZ
|d EUX
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCF
|d N$T
|d CAMBR
|d YDXCP
|d IDEBK
|d OCLCQ
|d UAB
|d OCLCQ
|d AU@
|d UKAHL
|d OCLCQ
|d K6U
|d LUN
|d OCLCQ
|d OCLCO
|d INTCL
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 841396505
|a 847527149
|a 1167479916
|
020 |
|
|
|a 9781107094635
|
020 |
|
|
|a 1107094631
|
020 |
|
|
|a 9781107088450
|q (electronic bk.)
|
020 |
|
|
|a 1107088453
|q (electronic bk.)
|
020 |
|
|
|a 9781139193184
|q (electronic bk.)
|
020 |
|
|
|a 113919318X
|q (electronic bk.)
|
020 |
|
|
|z 9780521438001
|
020 |
|
|
|z 0521438004
|
029 |
1 |
|
|a DEBSZ
|b 384345042
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910052420305765
|
035 |
|
|
|a (OCoLC)850149030
|z (OCoLC)841396505
|z (OCoLC)847527149
|z (OCoLC)1167479916
|
050 |
|
4 |
|a QA609 .P79 2010
|
072 |
|
7 |
|a MAT
|x 038000
|2 bisacsh
|
082 |
0 |
4 |
|a 514.742
|a 514/.742
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Przytycki, Feliks.
|
245 |
1 |
0 |
|a Conformal Fractals :
|b Ergodic Theory Methods.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2010.
|
300 |
|
|
|a 1 online resource (366 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society Lecture Note Series ;
|v v. 371
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references (pages 336-348) and index.
|
505 |
0 |
0 |
|t Introduction --
|g 1.
|t Basic examples and definitions --
|g 2. Measure-preserving endomorphisms --
|g 3.
|t Ergodic theory on compact metric spaces --
|g 4.
|t Distance-expanding maps --
|g 5.
|t Thermodynamical formalism --
|g 6.
|t Expanding repellers in manifolds and in the Riemann sphere: preliminaries --
|g 7.
|t Cantor repellers in the line; Sullivan's scaling function; application in Feigenbaum universality --
|g 8.
|t Fractal dimensions --
|g 9.
|t Conformal expanding repellers --
|g 10.
|t Sullivan's classification of conformal expanding repellers --
|g 11.
|t Holomorphic maps with invariant probability measures of positive Lyapunov exponent --
|g 12.
|t Conformal measures.
|
520 |
|
|
|a "This is a one-stop introduction to the methods of ergodic theory applied to holomorphic iteration. The authors begin with introductory chapters presenting the necessary tools from ergodic theory thermodynamical formalism, and then focus on recent developments in the field of 1-dimensional holomorphic iterations and underlying fractal sets, from the point of view of geometric measure theory and rigidity. Detailed proofs are included. Developed from university courses taught by the authors, this book is ideal for graduate students. Researchers will also find it a valuable source of reference to a large and rapidly expanding field. It eases the reader into the subject and provides a vital springboard for those beginning their own research. Many helpful exercises are also included to aid understanding of the material presented and the authors provide links to further reading and related areas of research"--Provided by publisher
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Conformal geometry.
|
650 |
|
0 |
|a Ergodic theory.
|
650 |
|
0 |
|a Fractals.
|
650 |
|
0 |
|a Iterative methods (Mathematics)
|
650 |
|
6 |
|a Géométrie conforme.
|
650 |
|
6 |
|a Théorie ergodique.
|
650 |
|
6 |
|a Fractales.
|
650 |
|
6 |
|a Itération (Mathématiques)
|
650 |
|
7 |
|a fractals.
|2 aat
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
|
7 |
|a Conformal geometry
|2 fast
|
650 |
|
7 |
|a Ergodic theory
|2 fast
|
650 |
|
7 |
|a Fractals
|2 fast
|
650 |
|
7 |
|a Iterative methods (Mathematics)
|2 fast
|
700 |
1 |
|
|a Urbanski, Mariusz.
|
776 |
0 |
8 |
|i Print version:
|a Przytycki, Feliks.
|t Conformal Fractals : Ergodic Theory Methods.
|d Cambridge : Cambridge University Press, ©2010
|z 9780521438001
|
830 |
|
0 |
|a London Mathematical Society lecture note series.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570406
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25052674
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26385485
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1179129
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 570406
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25773468
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10794848
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10440876
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10759668
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10760945
|
994 |
|
|
|a 92
|b IZTAP
|