Cargando…

Nonuniform Hyperbolicity : Dynamics of Systems with Nonzero Lyapunov Exponents.

A self-contained, comprehensive account of modern smooth ergodic theory, the mathematical foundation of deterministic chaos.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barreira, Luis
Otros Autores: Pesin, Yakov
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2007.
Colección:Encyclopedia of mathematics and its applications.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn850148878
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 130625s2007 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d OCLCO  |d DEBSZ  |d EUX  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCF  |d YDXCP  |d N$T  |d CAMBR  |d IDEBK  |d OCLCQ  |d OCLCO  |d UAB  |d OCLCQ  |d OCLCA  |d AU@  |d OCLCO  |d UKAHL  |d OCLCQ  |d K6U  |d INARC  |d LUN  |d MM9  |d OCLCQ  |d OCLCO  |d AUW  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBA7A0879  |2 bnb 
019 |a 843762787  |a 847526679  |a 1117884342  |a 1150927609  |a 1170070263  |a 1170357709  |a 1171057951  |a 1180915431 
020 |a 9781107095915 
020 |a 1107095913 
020 |a 9781107089563  |q (electronic bk.) 
020 |a 1107089565  |q (electronic bk.) 
020 |a 9781107326026  |q (electronic bk.) 
020 |a 1107326028  |q (electronic bk.) 
020 |a 1107104009  |q (e-book) 
020 |a 9781107104006  |q (e-book) 
020 |z 9780521832588 
020 |z 0521832586 
029 1 |a DEBSZ  |b 383696453 
035 |a (OCoLC)850148878  |z (OCoLC)843762787  |z (OCoLC)847526679  |z (OCoLC)1117884342  |z (OCoLC)1150927609  |z (OCoLC)1170070263  |z (OCoLC)1170357709  |z (OCoLC)1171057951  |z (OCoLC)1180915431 
050 4 |a QA871 .B365 2007 
072 7 |a SCI  |x 018000  |2 bisacsh 
082 0 4 |a 531.11  |a 531/.11 
084 |a 31.41  |2 bcl 
084 |a 37-02  |a 37D25  |a 37A30  |2 msc 
084 |a SK 810  |2 rvk 
049 |a UAMI 
100 1 |a Barreira, Luis. 
245 1 0 |a Nonuniform Hyperbolicity :  |b Dynamics of Systems with Nonzero Lyapunov Exponents. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2007. 
300 |a 1 online resource (528 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of Mathematics and its Applications ;  |v v. 115 
505 0 |a Cover; Half Title; Series Page; Title; Copyright; Dedication; Contents; Preface; Introduction; Part I Linear Theory; 1 The Concept of Nonuniform Hyperbolicity; 1.1 Motivation; 1.2 Basic Setting; 1.2.1 Exponential Splitting and Nonuniform Hyperbolicity; 1.2.2 Tempered Equivalence; 1.2.3 The Continuous-Time Case; 1.3 Lyapunov Exponents Associated to Sequences of Matrices; 1.3.1 Definition of the Lyapunov Exponent; 1.3.2 Forward and Backward Regularity; 1.3.3 A Criterion of Forward Regularity for Triangular Matrices; 1.3.4 The Lyapunov-Perron Regularity; 1.4 Notes. 
505 8 |a 2 Lyapunov Exponents for Linear Extensions2.1 Cocycles over Dynamical Systems; 2.1.1 Cocycles and Linear Extensions; 2.1.2 Cohomology and Tempered Equivalence; 2.1.3 Examples and Basic Constructions; 2.2 Hyperbolicity of Cocycles; 2.2.1 Hyperbolic Cocycles; 2.2.2 Regular Sets of Hyperbolic Cocycles; 2.2.3 Cocycles over Topological Spaces; 2.3 Lyapunov Exponents for Cocycles; 2.4 Spaces of Cocycles; 3 Regularity of Cocycles; 3.1 The Lyapunov-Perron regularity; 3.2 Lyapunov Exponents and Basic Constructions; 3.3 Lyapunov Exponents and Hyperbolicity; 3.4 The Multiplicative Ergodic Theorem. 
505 8 |a 3.4.1 One-Dimensional Cocycles and Birkhoff's Ergodic Theorem3.4.2 Oseledets' Proof of the Multiplicative Ergodic Theorem; 3.4.3 Lyapunov Exponents and Subadditive Ergodic Theorem; 3.4.4 Raghunathan's Proof of the Multiplicative Ergodic Theorem; 3.5 Tempering Kernels and the Reduction Theorems; 3.5.1 Lyapunov Inner Products; 3.5.2 The Oseledets-Pesin Reduction Theorem; 3.5.3 A Tempering Kernel; 3.5.4 Zimmer's Amenable Reduction; 3.5.5 The Case of Noninvertible Cocycles; 3.6 More results on Lyapunov-Perron regularity; 3.6.1 Higher-Rank Abelian Actions; 3.6.2 The Case of Flows. 
505 8 |a 3.6.3 Nonpositively Curved Spaces3.7 Notes; 4 Methods for Estimating Exponents; 4.1 Cone and Lyapunov Function Techniques; 4.1.1 Lyapunov Functions; 4.1.2 A Criterion for Nonvanishing Lyapunov Exponents; 4.1.3 Invariant Cone Families; 4.2 Cocycles with Values in the Symplectic Group; 4.3 Monotone Operators and Lyapunov Exponents; 4.3.1 The Algebra of Potapov; 4.3.2 Lyapunov Exponents for J-Separated Cocycles; 4.3.3 The Lyapunov Spectrum for Conformally Hamiltonian Systems; 4.4 A Remark on Applications of Cone Techniques; 4.5 Notes; 5 The Derivative Cocycle. 
505 8 |a 5.1 Smooth Dynamical Systems and the Derivative Cocycle5.2 Nonuniformly Hyperbolic Diffeomorphisms; 5.3 Hölder Continuity of Invariant Distributions; 5.4 Lyapunov Exponent and Regularity of the Derivative Cocycle; 5.5 On the Notion of Dynamical Systems with Nonzero Lyapunov Exponents; 5.6 Regular Neighborhoods; 5.7 Cocycles over Smooth Flows; 5.8 Semicontinuity of Lyapunov Exponents; Part II Examples and Foundations of the Nonlinear Theory; 6 Examples of Systems with Hyperbolic Behavior; 6.1 Uniformly Hyperbolic Sets; 6.1.1 Hyperbolic Sets for Maps; 6.1.2 Hyperbolic Sets for Flows. 
500 |a 6.1.3 Linear Horseshoes. 
520 |a A self-contained, comprehensive account of modern smooth ergodic theory, the mathematical foundation of deterministic chaos. 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 491-500) and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Dynamics. 
650 0 |a Lyapunov exponents. 
650 0 |a Lyapunov stability. 
650 6 |a Dynamique. 
650 6 |a Exposants de Liapounov. 
650 6 |a Stabilité au sens de Liapounov. 
650 7 |a SCIENCE  |x Mechanics  |x Dynamics.  |2 bisacsh 
650 7 |a Dynamics  |2 fast 
650 7 |a Lyapunov exponents  |2 fast 
650 7 |a Lyapunov stability  |2 fast 
650 7 |a Dynamisches System  |2 gnd 
650 7 |a Hyperbolizität  |2 gnd 
650 7 |a Ljapunov-Exponent  |2 gnd 
650 7 |a Sistemas dinâmicos.  |2 larpcal 
700 1 |a Pesin, Yakov. 
776 0 8 |i Print version:  |a Barreira, Luis.  |t Nonuniform Hyperbolicity : Dynamics of Systems with Nonzero Lyapunov Exponents.  |d Cambridge : Cambridge University Press, ©2007  |z 9780521832588 
830 0 |a Encyclopedia of mathematics and its applications. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569370  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25052495 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37561662 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385627 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1178971 
938 |a EBSCOhost  |b EBSC  |n 569370 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25780724 
938 |a Internet Archive  |b INAR  |n nonuniformhyperb0000barr 
938 |a YBP Library Services  |b YANK  |n 10705757 
938 |a YBP Library Services  |b YANK  |n 10759676 
938 |a YBP Library Services  |b YANK  |n 10760955 
938 |a YBP Library Services  |b YANK  |n 10762340 
994 |a 92  |b IZTAP