Cargando…

Practical guide to flexible polyurethane foams /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Defonseka, Chris
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Shrewsbury : Smithers Rapra, 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Introduction
  • 1.1. Brief History
  • 1.1.1. Flexible Foams
  • 1.1.2. Rigid Polyurethane Foams
  • 1.1.3. Automotives
  • 1.1.4. Elastomers
  • 1.1.5. Insulation
  • 1.1.6. Moulded Parts
  • 1.1.7. Spray Roofing Systems
  • 1.1.8. Speciality Urethane Systems
  • 1.2. Types of Foams
  • 1.3. Basic Foam Grades
  • 1.4. Viscoelastic Foam Mattresses: Marketing Hype or Molecular Miracle?
  • 1.5. Flexible Slabstock Foams
  • 1.6. What is a Flexible Polyurethane Foam?
  • 1.7. What is a Viscoelastic Foam?
  • 1.8. Characteristics of Viscoelastic Foams
  • 1.9. Physical Properties of Viscoelastic Foams
  • 1.10. Performance Testing of Viscoelastic Foams
  • 1.10.1. Reduction and Relief of Pressure
  • 1.10.2. Hyper or Pseudo Effects?
  • 1.10.3. Viscoelastic Foam: Summary
  • 1.10.4. End Applications
  • 2. Basic Chemistry
  • 2.1. Brief Introduction
  • 2.2. Organic Chemistry
  • 2.2.1. Basics
  • 2.2.2. History
  • 2.2.3. Characteristics
  • 2.2.4. Properties
  • 2.2.5. Melting and Boiling Properties
  • 2.2.6. Solubility
  • 2.2.7. Nomenclature
  • 2.2.8. Structural Presentation
  • 2.3. Classification of Organic Compounds
  • 2.3.1. Functional Groups
  • 2.3.2. Aliphatic Compounds
  • 2.3.3. Aromatic Compounds
  • 2.3.4. Heterocyclic Compounds
  • 2.3.5. Polymers
  • 2.3.6. Organic Synthesis
  • 2.3.7. Organic Reactions
  • 2.4. Inorganic Chemistry
  • 2.4.1. Industrial Inorganic Chemistry
  • 2.5. Classification of Inorganic Chemistry
  • 2.5.1. Coordination Compounds
  • 2.5.2. Main Group Compounds
  • 2.5.3. Transition Metal Compounds
  • 2.5.4. Organometallic Compounds
  • 2.5.5. Cluster Compounds
  • 2.5.6. Bio-inorganic Compounds
  • 2.5.7. Solid State Compounds
  • 2.5.8. Qualitative Theories
  • 2.5.9. Molecular Symmetry Group Theory
  • 2.6. Basics of Analytical Chemistry
  • 2.6.1. Qualitative Analyses
  • 2.6.1.1. Flame Test
  • 2.6.1.2. Gravimetric Analyses
  • 2.6.1.3. Volumetric Analyses
  • 2.6.1.4. Mass Spectrometry
  • 2.6.1.5. Electrochemical Analyses
  • 2.6.1.6. Microscopy
  • 3. Basic Polymer Chemistry
  • 3.1. What is a Polymer?
  • 3.1.1. Polymer Synthesis
  • 3.1.2. Modification of Natural Polymers
  • 3.2. Polymer Properties
  • 3.2.1. Monomers
  • 3.2.2. Microstructure
  • 3.2.3. Chain Length!
  • 3.2.4. Molecular Mass (Weight)
  • 3.2.5. Polymerisation
  • 3.2.6. Condensation Polymerisation
  • 3.3. Mechanical Properties
  • 3.3.1. Tensile Strength
  • 3.3.2. Young's Modulus of Elasticity
  • 3.3.3. Melting Point
  • 3.3.4. Glass Transition Temperature
  • 3.3.5. Mixing Behaviour
  • 3.3.6. Polymer Degradation
  • 4. Polyurethane Raw Materials
  • 4.1. Polyols
  • 4.1.1. Graft Polyols
  • 4.1.2. Isocyanates
  • 4.1.3. Bio-polyols
  • 4.2. Catalysts
  • 4.3. Blowing. Agents
  • 4.4. Surfactants
  • 4.5. Methylene Chloride
  • 4.6. Additives
  • 4.6.1. Pigments
  • 4.6.2. Fillers
  • 4.6.3. Retardants
  • 4.6.4. Anti-oxidants
  • 4.6.5. Anti-static Agents
  • 4.6.6. Cell Openers
  • 4.6.7. Plasticisers
  • 4.6.8. Anti-bacterial Agents
  • 4.6.9. Ultraviolet Stabilisers
  • 4.6.10. Colorants
  • 4.6.11. Colour Basics
  • 4.6.12. Foam Hardeners
  • 4.6.13. Crosslinkers
  • 4.6.14. Compatibilisers
  • 4.7. Accessories
  • 4.7.1. Kraft Paper
  • 4.7.2. Machine-glazed Paper
  • 4.7.3. Polyethylene-coated Paper
  • 4.7.4. Peelable Kraft Paper
  • 4.7.5. Plastic Films
  • 4.7.6. Mould Release Agents
  • 4.8. Summary
  • 5. Properties and Foaming Technology of Polyurethane Foam
  • 5.1. Properties of-Polyurethane Foam
  • 5.1.1. Basic Physical Properties
  • 5.1.2. Tension Test (Tensile Strength)
  • 5.1.3. Tear Resistance
  • 5.1.4. Airflow
  • 5.1.5. Resilience
  • 5.1.6. Fogging
  • 5.1.7. Durability
  • 5.2. In Industrial Applications
  • 5.2.1. Foam is a Good Air Sealant
  • 5.3. Closed Cell Foams
  • 5.3.1. Foams have Structural Advantages
  • 5.3.2. Foam usage in Sound Control
  • 5.4. Foaming Technology
  • 5.4.1. Raw Materials and Their Functions
  • 5.4.2. Polyols
  • 5.4.3. Di-isocyanate
  • 5.4.4. Water
  • 5.4.5. Auxiliary Blowing Agents
  • 5.4.6. Catalysts
  • 5.4.7. Silicone Surfactants
  • 5.4.8. Graft Polyols
  • 5.4.9. Extenders
  • 5.4.10. Colourants
  • 5.4.11. Fillers
  • 5.4.12. Additives
  • 5.5. Foaming Process
  • 5.5.1. Mixing
  • 5.5.2. Nucleation
  • 5.5.3. Expansion
  • 5.5.4. Cell Opening
  • 5.5.5. Gelation
  • 5.5.6. Curing
  • 5.6. Storage of Foam Blocks
  • 5.7. Cutting and Fabrication
  • 5.8. Filled Foam
  • 5.8.1. Type of Filler
  • 5.8.2. How Much Filler can be used?
  • 5.9. Effects of Changes in Physical Properties
  • 5.10. Processing Difficulties
  • 5.11. Description of Additional Equipment
  • 5.12. Procedure
  • 6. Foaming Calculations, Other Calculations and Formulations
  • 6.1. Calculations
  • 6.1.1. Density
  • 6.1.2. Mixing Ratio
  • 6.1.3. Isocyanate Index
  • 6.1.4. Ratio Calculation
  • 6.1.5. Pump Rates Per Minute versus Flow Rate
  • 6.1.6. Machine Flow Rate versus Mould Volume
  • 6.2. Calculations for Making Large Foam Blocks: Discontinuous Process
  • 6.2.1. Calculation of Material Required
  • 6.2.2. Calculating Raw Material Components
  • 6.3. Typical Formulations
  • 6.3.1. Conventional Foam (Density Range 16.0-32 kg/m3)
  • 6.3.2. High-resilience Foams
  • 6.3.3. Viscoelastic Foam
  • 6.3.4. Slab Stock Foam (Continuous Foaming)
  • 6.4. Calculating Indentation Force Deflection
  • 6.5. Calculating Electrical Power
  • 6.5.1. Basic Example as a Guideline
  • 6.6. Calculating Water Requirements
  • 6.7. Compressed Air
  • 6.7.1. Air Pressure versus Volume Calculator
  • 6.8. Financial Indicators
  • 6.8.1. Breakeven Point
  • 6.8.2. Return on Equity
  • 6.8.3. Return on Assets
  • 6.8.4. Gross Profit Margin
  • 6.8.5. Cash Flow
  • 6.8.6. Contribution Margin
  • 6.8.7. Debt to Equity Ratio
  • 6.9. Quick Performance Indicators
  • 6.9.1. Return per Kilogramme
  • 6.9.2. Cost per Kilogramme
  • 6.9.3. Breakeven Analysis
  • 6.10. Recommended Basic Foam Formulations
  • 6.11. To Save Waste on Foam Buns (Blocks)
  • 7. Plant Machinery, and Equipment
  • 7.1. Mould Design
  • 7.1.1. Design Philosophy
  • 7.1.2. Defining Product Requirements
  • 7.1.3. Loading Conditions
  • 7.1.4. Environmental Conditions
  • 7.1.5. Dimensional Requirements
  • 7.1.6. Preliminary Computer-aided Design Model
  • 7.1.7. Material Selection
  • 7.1.8. Process Selection
  • 7.1.9. Process Influences
  • 7.1.10. Orientation of the Final ̀Product'
  • 7.1.11. Computer Simulation
  • 7.1.12. Shrinkage and Warping
  • 7.1.13. Basic Moulds for Flexible Foams
  • 7.2. Foaming Machinery and Equipment
  • 7.2.1. Low-pressure Machines
  • 7.2.2. High-pressure Machines
  • 7.2.3. Images of Foaming Machines
  • 7.3. Foam Cutting and Fabrication
  • 7.3.1. Horizontal Cutting
  • 7.3.2. Vertical Cutting
  • 7.3.3. Specialised Cutting
  • 8. Manufacturing Processes for Flexible Foams
  • 8.1. Box Process for Small-volume Producers
  • 8.1.1. Process
  • 8.1.2. Advantages
  • 8.1.3. Disadvantages
  • 8.2. Discontinuous Process
  • 8.2.1. Manual Process
  • 8.2.2. Advantages
  • 8.2.3. Disadvantages
  • 8.3. Semi-automatic and Automatic Processes
  • 8.3.1. Advantages
  • 8.3.2. Disadvantages
  • 8.4. Viscoelastic Discontinuous Block Foaming
  • 8.5. Continuous Process
  • 8.5.1. Advantages
  • 8.5.2. Disadvantages
  • 8.6. Maxfoam System
  • 8.6.1. Basic Principles
  • 8.6.2. Basic Features of the Maxfoam System
  • 8.7. Vertifoam Vertical Foaming System
  • 8.8. Varimax Continuous System
  • 8.9. C-Max High-pressure System
  • 8.10. CarDio Process
  • 8.11. Viscoelastic Continuous Foaming
  • 8.12. Laboratory-scale Production
  • 8.13. Inherent Waste Factors
  • 8.14. Moulded Flexible Polyurethane Foams
  • 8.14.1. Component A
  • 8.15. Effects of Temperature on Diphenylmethane Di-isocyanate
  • 8.16. Polyol Blends
  • 8.17. Basic Chemical Reactions
  • 8.18. Shipping Containers for Component Systems
  • 8.19. Checking for Water Contamination
  • 8.20. Unloading and Storage of Chemicals
  • 8.21. Preparing for Production
  • 8.21.1. Filling the Day Tanks
  • 8.21.2. Calibration of Processing Equipment
  • 8.21.3. Foam Re-activities
  • 8.21.4. Throughput
  • 8.21.5. Free Rise Density
  • -- 8.21.6. Foam Structure
  • 8.21.7. Filling the Moulds
  • 8.21.8. Pouring Pattern Tips
  • 8.21.9. About Moulds
  • 8.21.10. Mould-release Agents
  • 8.21.11. In-mould Coatings
  • 8.21.12. Moulding with Inserts
  • 8.21.13. Mould Clamping
  • 8.21.14. Mould Cleaning
  • 8.21.15. Flushing the Mixhead
  • 8.21.16. Lead-lag
  • 8.21.17. Recharging Day Tanks
  • 8.22. Examples of Typical Processing
  • 8.22.1. Material Storage
  • 8.22.2. Handling of Raw Material
  • 8.22.3. Moulds
  • 8.22.4. Mixing and Weighing Procedures
  • 8.22.5. Tips for Minimising Waste
  • 9. Basic Safety Factors
  • 9.1. Buildings
  • 9.2. Storage of Raw Materials
  • 9.3. Production
  • 9.4. Safety Provisions
  • 9.5. Basics of Spill Management
  • 9.6. Recommended Safety Equipment
  • 9.7. Handling Precautions
  • 9.8. Health and Industrial Hygiene
  • 9.8.1. Polyols
  • 9.8.2. Isocyanates and Prepolymers
  • 9.8.3. Component Systems
  • 9.8.4. Other Raw Materials
  • 9.9. Spill Management
  • 10. Setting-up a Manufacturing Plant for an. Entrepreneur
  • 10.1. Example A: Manual Operation
  • 10.1.1. Raw Materials
  • 10.1.2. Moulds
  • 10.1.3. Cutting and Fabrication.
  • Note continued: 10.1.4. Hot-wire Cutting Machine
  • 10.1.5. Production Method
  • 10.2. Example B: Making Large Foam Blocks
  • 10.2.1. Foaming Systems
  • 10.3. Description of a Typical Semi-automatic Batch Foaming Plant
  • 10.3.1. Foaming Machine
  • 10.3.2. Foam Cutting Machines
  • 10.3.2.1. One Circular (Carousel) Cutting Machine
  • 10.3.2.2. Vertical Cutting Machine
  • 10.3.3. Foam-shredding Machine
  • 10.4. Fully Automatic Operation
  • 10.4.1. Production (Manual or Semi-automatic)
  • 11. Manufacturing Plants for Large-Volume Producers
  • 11.1. Planned Production
  • 11.2. Location and Factory Buildings
  • 11.3. Storage of Raw Materials
  • 11.3.1. Storage Conditions
  • 11.3.2. Tank Room
  • 11.4. Trough Paper
  • 11.5. General Machinery
  • 11.6. Basic Equipment
  • 11.7. Utilities
  • 11.8. Plant Layout
  • 11.9. In-house Laboratory
  • 11.10. Quality Control
  • 11.11. Safety Systems
  • 11.12. Foam Production
  • 11.13. Foam Cutting and Fabrication
  • 11.14. Recycling of Foam Waste
  • 12. Recommendations for Process Efficiency
  • 12.1. Basic Laboratory Equipment
  • 12.2. Recommendations for the Efficiency of Foam Plants
  • 12.1.1. Key Factors on a Production Floor
  • 12.2.2. Preventive Maintenance in Foam Plants
  • 12.3. Guidelines for a Quality Control System
  • 12.3.1. What is a Control Chart?
  • 12.3.2. What is an X-R Chart?
  • 12.3.3. What is a P Chart?
  • 12.4. General Recommendations for Troubleshooting.