An algebraic introduction to K-theory /
"The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, UK ; New York :
Cambridge University Press,
2002.
|
Colección: | Encyclopedia of mathematics and its applications ;
v. 87. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Part I Groups of Modules: K[subscript 0] 15
- Chapter 1 Free Modules 17
- 1A Bases 17
- 1B Matrix Representations 26
- 1C Absence of Dimension 38
- Chapter 2 Projective Modules 43
- 2A Direct Summands 43
- 2B Summands of Free Modules 51
- Chapter 3 Grothendieck Groups 57
- 3A Semigroups of Isomorphism Classes 57
- 3B Semigroups to Groups 71
- 3C Grothendieck Groups 83
- 3D Resolutions 95
- Chapter 4 Stability for Projective Modules 104
- 4A Adding Copies of R 104
- 4B Stably Free Modules 108
- 4C When Stably Free Modules Are Free 113
- 4D Stable Rank 120
- 4E Dimensions of a Ring 128
- Chapter 5 Multiplying Modules 133
- 5A Semirings 133
- 5B Burnside Rings 135
- 5C Tensor Products of Modules 141
- Chapter 6 Change of Rings 160
- 6A K[subscript 0] of Related Rings 160
- 6B G[subscript 0] of Related Rings 169
- 6C K[subscript 0] as a Functor 174
- 6D The Jacobson Radical 178
- 6E Localization 185
- Part II Sources of K[subscript 0] 203
- Chapter 7 Number Theory 205
- 7A Algebraic Integers 205
- 7B Dedekind Domains 212
- 7C Ideal Class Groups 224
- 7D Extensions and Norms 230
- 7E K[subscript 0] and G[subscript 0] of Dedekind Domains 242
- Chapter 8 Group Representation Theory 252
- 8A Linear Representations 252
- 8B Representing Finite Groups Over Fields 265
- 8C Semisimple Rings 277
- 8D Characters 300
- Part III Groups of Matrices: K[subscript 1] 317
- Chapter 9 Definition of K[subscript 1] 319
- 9A Elementary Matrices 319
- 9B Commutators and K[subscript 1](R) 322
- 9C Determinants 328
- 9D The Bass K[subscript 1] of a Category 333
- Chapter 10 Stability for K[subscript 1](R) 342
- 10A Surjective Stability 343
- 10B Injective Stability 348
- Chapter 11 Relative K[subscript 1] 357
- 11A Congruence Subgroups of GL[subscript n](R) 357
- 11B Congruence Subgroups of SL[subscript n](R) 369
- 11C Mennicke Symbols 374
- Part IV Relations Among Matrices: K[subscript 2] 399
- Chapter 12 K[subscript 2](R) and Steinberg Symbols 401
- 12A Definition and Properties of K[subscript 2](R) 401
- 12B Elements of St(R) and K[subscript 2](R) 413
- Chapter 13 Exact Sequences 430
- 13A The Relative Sequence 431
- 13B Excision and the Mayer-Vietoris Sequence 456
- 13C The Localization Sequence 481
- Chapter 14 Universal Algebras 488
- 14A Presentation of Algebras 489
- 14B Graded Rings 493
- 14C The Tensor Algebra 497
- 14D Symmetric and Exterior Algebras 505
- 14E The Milnor Ring 518
- 14F Tame Symbols 534
- 14G Norms on Milnor K-Theory 547
- 14H Matsumoto's Theorem 557
- Part V Sources of K[subscript 2] 567
- Chapter 15 Symbols in Arithmetic 569
- 15A Hilbert Symbols 569
- 15B Metric Completion of Fields 572
- 15C The p-Adic Numbers and Quadratic Reciprocity 580
- 15D Local Fields and Norm Residue Symbols 595
- Chapter 16 Brauer Groups 610
- 16A The Brauer Group of a Field 610
- 16B Splitting Fields 623
- 16C Twisted Group Rings 629
- 16D The K[subscript 2] Connection 636
- A Sets, Classes, Functions 645
- B Chain Conditions, Composition Series 647.