Variational principles in mathematical physics, geometry, and economics : qualitative analysis of nonlinear equations and unilateral problems /
"This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, UK ; New York :
Cambridge University Press,
2010.
|
Colección: | Encyclopedia of mathematics and its applications ;
v. 136. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Part I. Variational Principles in Mathematical Physics: 1. Variational principles
- 2. Variational inequalities
- 3. Nonlinear eigenvalue problems
- 4. Elliptic systems of gradient type
- 5. Systems with arbitrary growth nonlinearities
- 6. Scalar field systems
- 7. Competition phenomena in Dirichlet problems
- 8. Problems to Part I
- Part II. Variational Principles in Geometry: 9. Sublinear problems on Riemannian manifolds
- 10. Asymptotically critical problems on spheres
- 11. Equations with critical exponent
- 12. Problems to Part II
- Part III. Variational Principles in Economics: 13. Mathematical preliminaries
- 14. Minimization of cost-functions on manifolds
- 15. Best approximation problems on manifolds
- 16. A variational approach to Nash equilibria
- 17. Problems to Part III; Appendix A. Elements of convex analysis; Appendix B. Function spaces; Appendix C. Category and genus; Appendix D. Clarke and Degiovanni gradients; Appendix E. Elements of set-valued analysis.