Process intensification : engineering for efficiency, sustainability and flexibility /
This book provides a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems.
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Butterworth-Heinemann,
2013.
|
Edición: | Second edition. |
Colección: | Isotopes in organic chemistry.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: ch. 1 A Brief History of Process Intensification
- 1.1. Introduction
- 1.2. Rotating boilers
- 1.2.1. The rotating boiler/turbine concept
- 1.2.2. NASA work on rotating boilers
- 1.3. The rotating heat pipe
- 1.3.1. Rotating air conditioning unit
- 1.4. The chemical process industry
- the process intensification breakthrough at ICI
- 1.5. Separators
- 1.5.1. The Podbielniak extractor
- 1.5.2. Centrifugal evaporators
- 1.5.3. The still of John Moss
- 1.5.4. Extraction research in Bulgaria
- 1.6. Reactors
- 1.6.1. Catalytic plate reactors
- 1.6.2. Polymerisation reactors
- 1.6.3. Rotating fluidised bed reactor
- 1.6.4. Reactors for space experiments
- 1.6.5. Towards perfect reactors
- 1.7. Non-chemical industry-related applications of rotating heat and mass transfer
- 1.7.1. Rotating heat transfer devices
- 1.8. Where are we today?
- 1.8.1. Clean technologies
- 1.8.2. Integration of process intensification and renewable energies
- 1.8.3. PI and carbon capture
- 1.9. Summary
- References
- ch. 2 Process Intensification
- An Overview
- 2.1. Introduction
- 2.2. What is process intensification?
- 2.3. The original ICI PI strategy
- 2.4. The advantages of PI
- 2.4.1. Safety
- 2.4.2. The environment
- 2.4.3. Energy
- 2.4.4. The business process
- 2.5. Some obstacles to PI
- 2.6.A way forward
- 2.7. To whet the reader's appetite
- 2.8. Equipment summary
- finding your way around this book
- 2.9. Summary
- References
- ch. 3 The Mechanisms Involved in Process Intensification
- 3.1. Introduction
- 3.2. Intensified heat transfer
- the mechanisms involved
- 3.2.1. Classification of enhancement techniques
- 3.2.2. Passive enhancement techniques
- 3.2.3. Active enhancement methods
- 3.2.4. System impact of enhancement/intensification
- 3.3. Intensified mass transfer
- the mechanisms involved
- 3.3.1. Rotation
- 3.3.2. Vibration
- 3.3.3. Mixing
- 3.4. Electrically enhanced processes
- the mechanisms
- 3.5. Micro fluidics
- 3.5.1. Electrokinetics
- 3.5.2. Magnetohydrodynamics (MHD)
- 3.5.3. Opto-micro-fluidics
- 3.6. Pressure
- 3.7. Summary
- References
- ch. 4 Compact and Micro-heat Exchangers
- 4.1. Introduction
- 4.2.Compact heat exchangers
- 4.2.1. The plate heat exchanger
- 4.2.2. Printed circuit heat exchangers (PCHE)
- 4.2.3. The Chart-flo heat exchanger
- 4.2.4. Polymer film heat exchanger
- 4.2.5. Foam heat exchangers
- 4.2.6. Mesh heat exchangers
- 4.3. Micro-heat exchangers
- 4.4. What about small channels?
- 4.5. Nano-fluids
- 4.6. Summary
- References
- ch. 5 Reactors
- 5.1. Reactor engineering theory
- 5.1.1. Reaction kinetics
- 5.1.2. Residence time distributions (RTDs)
- 5.1.3. Heat and mass transfer in reactors
- 5.2. Spinning disc reactors
- 5.2.1. Exploitation of centrifugal fields
- 5.2.2. The desktop continuous process
- 5.2.3. The spinning disc reactor
- 5.2.4. The Nusselt flow model
- 5.2.5. Mass transfer
- 5.2.6. Heat transfer
- 5.2.7. Film-flow instability
- 5.2.8. Film-flow studies
- 5.2.9. Heat/mass transfer performance
- 5.2.10. Spinning disc reactor applications
- 5.3. Other rotating reactors
- 5.3.1. Rotor stator reactors: the STT reactor
- 5.3.2. Taylor-Couette reactor
- 5.3.3. Rotating packed-bed reactors
- 5.4. Oscillatory baffled reactors (OBRs)
- 5.4.1. Gas-liquid systems
- 5.4.2. Liquid-liquid systems
- 5.4.3. Heat transfer
- 5.4.4. OBR design
- 5.4.5. Biological applications
- 5.4.6. Solids suspension
- 5.4.7. Crystallisation
- 5.4.8. Oscillatory mesoreactors: scaling OBRs down
- 5.4.9. Case study
- 5.5. Micro-reactors (including HEX-reactors)
- 5.5.1. The catalytic plate reactor (CPR)
- 5.5.2. HEX-reactors
- 5.5.3. The corning micro-structured reactor
- 5.5.4. Constant power reactors
- 5.6. Field-enhanced reactions/reactors
- 5.6.1. Induction-heated reactor
- 5.6.2. Sonochemical reactors
- 5.6.3. Microwave enhancement
- 5.6.4. Plasma reactors
- 5.6.5. Laser-induced reactions
- 5.7. Reactive separations
- 5.7.1. Reactive distillation
- 5.7.2. Reactive extraction
- 5.7.3. Reactive adsorption
- 5.8. Membrane reactors
- 5.8.1. Tubular membrane reactor
- 5.8.2. Membrane slurry reactor
- 5.8.3. Biological applications of membrane reactors
- 5.9. Supercritical operation
- 5.9.1. Applications
- 5.10. Miscellaneous intensified reactor types
- 5.10.1. The Torbed reactor
- 5.10.2. Catalytic reactive extruders
- 5.10.3. Heat pipe reactors
- 5.11. Summary
- References
- ch. 6 Intensification of Separation Processes
- 6.1. Introduction
- 6.2. Distillation
- 6.2.1. Distillation
- dividing wall columns
- 6.2.2.Compact heat exchangers inside the column
- 6.2.3. Cyclic distillation systems
- 6.2.4. HiGee
- 6.3. Centrifuges
- 6.3.1. Conventional types
- 6.3.2. The gas centrifuge
- 6.4. Membranes
- 6.5. Drying
- 6.5.1. Electric drying and dewatering methods
- 6.5.2. Membranes for dehydration
- 6.6. Precipitation and crystallisation
- 6.6.1. The environment for particle formation
- 6.6.2. The spinning cone
- 6.6.3. Electric fields to aid crystallisation of thin films
- 6.7. Mop fan/deduster
- 6.7.1. Description of the equipment
- 6.7.2. Capture mechanism/efficiency
- 6.7.3. Applications
- 6.8. Electrolysis
- 6.8.1. Introduction
- 6.8.2. The effect of microgravity
- 6.8.3. The effect of high gravity
- 6.8.4. Current supply
- 6.8.5. Rotary electrolysis cell design
- 6.8.6. The static cell tests
- 6.8.7. The rotary cell experiments
- 6.9. Summary
- References
- ch. 7 Intensified Mixing
- 7.1. Introduction
- 7.2. Inline mixers
- 7.2.1. Static mixers
- 7.2.2. Ejectors
- 7.2.3. Rotor stator mixers
- 7.3. Mixing on a spinning disc
- 7.4. Induction-heated mixer
- 7.5. Summary
- References
- ch. 8 Application Areas
- Petrochemicals and Fine Chemicals
- 8.1. Introduction
- 8.2. Refineries
- 8.2.1. Catalytic plate reactor opportunities
- 8.2.2. More speculative opportunities
- 8.3. Bulk chemicals
- 8.3.1. Stripping and gas clean-up
- 8.3.2. Intensified methane reforming
- 8.3.3. The hydrocarbon chain
- 8.3.4. Reactive distillations for methyl and ethyl acetate
- 8.3.5. Formaldehyde from methanol using micro-reactors
- 8.3.6. Hydrogen peroxide production
- the Degussa PI route
- 8.3.7. Olefin hydroformylation
- use of a HEX-reactor
- 8.3.8. Polymerisation
- the use of spinning disc reactors
- 8.3.9. Akzo Nobel Chemicals
- reactive distillation
- 8.3.10. The gas turbine reactor
- a challenge for bulk chemical manufacture
- 8.3.11. Other bulk chemical applications in the literature
- 8.4. Fine chemicals and pharmaceuticals
- 8.4.1. Penicillin extraction
- 8.4.2. AstraZeneca work on continuous reactors
- 8.4.3. Micro-reactor for barium sulphate production
- 8.4.4. Spinning disc reactor for barium carbonate production
- 8.4.5. Spinning disc reactor for producing a drug intermediate
- 8.4.6. SDR in the fragrance industry
- 8.4.7.A continuous flow microwave reactor for production
- 8.4.8. Ultrasound and the intensification of micro-encapsulation
- 8.4.9. Powder coating technology
- Akzo Nobel powder coatings Ltd
- 8.4.10. Chiral amines
- scaling up in the Coflore flow reactor
- 8.4.11. Plant-wide PI in pharmaceuticals
- 8.5. Bioprocessing or processing of bioderived feedstock
- 8.5.1. Transesterification of vegetable oils
- 8.5.2. Bioethanol to ethylene in a micro-reactor
- 8.5.3. Base chemicals produced from biomass
- 8.6. Intensified carbon capture
- 8.6.1. Introduction
- 8.6.2. Carbon capture methods
- 8.6.3. Intensification of post-combustion carbon capture
- 8.6.4. Intensification of carbon capture using other techniques
- 8.7. Further reading
- 8.8. Summary
- References
- ch. 9 Application Areas
- Offshore Processing
- 9.1. Introduction
- 9.2. Some offshore scenarios
- 9.2.1.A view from BP a decade ago
- 9.2.2. More recent observations
- those of ConocoPhillips
- 9.2.3. One 2007 scenario
- 9.3. Offshore on platforms or subsea
- 9.3.1. Setting the scene
- 9.3.2. Down hole heavy crude oil processing
- 9.3.3.Compact heat exchangers offshore (and onshore)
- 9.3.4. Extending the PCHE concept to reactors
- 9.3.5. HiGee for enhanced oil recovery
- surfactant synthesis
- 9.3.6. Deoxygenation using high gravity fields
- 9.3.7. RF heating to recover oil from shale
- 9.4. Floating production, storage and offloading systems (FPSO) activities
- 9.5.
- Safety offshore
- can PI help?
- 9.6. Summary
- References
- ch. 10 Application Areas
- Miscellaneous Process Industries
- 10.1. Introduction
- 10.2. The nuclear industry
- 10.2.1. Highly compact heat exchangers for reactors
- 10.2.2. Nuclear reprocessing
- 10.2.3. Uranium enrichment by centrifuge
- 10.3. The food and drink sector
- 10.3.1. Barrier to PI
- 10.3.2. Sector characteristics
- 10.3.3. Induction-heated mixers
- 10.3.4. Electric fields for drying and cooking
- 10.3.5. Spinning discs in the food sector
- 10.3.6. Deaeration systems for beverage packaging
- 10.3.7. Intensified refrigeration
- 10.3.8. Pursuit dynamics intensified mixing
- 10.3.9. The Torbed reactor in food processing
- 10.4. Textiles
- 10.4.1. Textile preparation
- 10.4.2. Textile finishing
- 10.4.3. Textile effluent treatment
- 10.4.4. Laundry processes
- 10.4.5. Leather production
- 10.5. The metallurgical and glass industries
- 10.5.1. The metallurgical sector
- 10.5.2. The glass and ceramics industry
- 10.6. Aerospace
- 10.7. Biotechnology
- 10.7.1. Biodiesel production
- 10.7.2. Waste/effluent treatment
- 10.8. Summary
- References
- ch. 11 Application Areas
- the Built Environment, Electronics, and the Home
- 11.1. Introduction
- 11.2. Refrigeration/heat pumping
- 11.2.1. The Rotex chiller/heat pump
- 11.2.2.Compact heat exchangers in heat pumps
- 11.2.3. Micro-refrigerator for chip cooling
- 11.2.4. Absorption and adsorption cycles
- 11.3. Power generation
- 11.3.1. Miniature
- Note continued: ch. 12 Specifying, Manufacturing and Operating PI Plant
- 12.1. Introduction
- 12.2. Various approaches to adopting PI
- 12.2.1. Process integration
- 12.2.2. Britest process innovation
- 12.2.3. Process analysis and development
- a German approach
- 12.3. Initial assessment
- 12.3.1. Know your current process
- 12.3.2. Identify process limiting factors
- 12.3.3. Some key questions to address
- 12.4. Equipment specification
- 12.4.1. Concerns about fouling
- 12.4.2. Factors affecting control and their relevance to PI plant
- 12.4.3. Try it out!
- 12.5. Installation features of PI plant
- 12.6. Pointers to the successful operation of PI plant
- 12.7. The systematic approach to selecting PI technology
- 12.7.1.A process intensification methodology
- 12.8. The ultimate goal
- whole plant intensification
- 12.9. Learning from experience
- 12.10. Summary
- References
- Appendix: Applications of the PI Methodology
- 12.11.1. Case Studies 1-4
- Appendix 1 Abbreviations Used
- Appendix 2 Nomenclature
- Appendix 3 Equipment Suppliers
- Appendix 4 R & D Organisations, Consultants and Miscellaneous Groups Active in PI
- Appendix 5 A Selection of Other Useful Contact Points, Including Networks and Websites.