|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
EBSCO_ocn847526834 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130610t20132013enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d UIU
|d CUS
|d YDXCP
|d OCLCF
|d B24X7
|d COO
|d UPM
|d GGVRL
|d EBLCP
|d UKDOC
|d DEBSZ
|d ICA
|d AGLDB
|d OCLCQ
|d ZCU
|d MERUC
|d U3W
|d D6H
|d OCLCQ
|d VTS
|d ICG
|d STF
|d DKC
|d OCLCQ
|d M8D
|d OCLCQ
|d ERF
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 851315911
|a 999655810
|
020 |
|
|
|a 9780080983059
|q (electronic bk.)
|
020 |
|
|
|a 0080983057
|q (electronic bk.)
|
020 |
|
|
|z 9780080983042
|
020 |
|
|
|z 0080983049
|
029 |
1 |
|
|a AU@
|b 000052185289
|
029 |
1 |
|
|a CHNEW
|b 001011226
|
029 |
1 |
|
|a DEBBG
|b BV042310084
|
029 |
1 |
|
|a DEBBG
|b BV044176050
|
029 |
1 |
|
|a DEBSZ
|b 395947731
|
029 |
1 |
|
|a DEBSZ
|b 431439516
|
029 |
1 |
|
|a DEBSZ
|b 481273565
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:000737930
|
029 |
1 |
|
|a NZ1
|b 15292927
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999942902405765
|
035 |
|
|
|a (OCoLC)847526834
|z (OCoLC)851315911
|z (OCoLC)999655810
|
050 |
|
4 |
|a TP155.75
|
072 |
|
7 |
|a SCI
|x 013060
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 009010
|2 bisacsh
|
082 |
0 |
4 |
|a 660.2815
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Reay, D. A.
|q (David Anthony),
|e author.
|
245 |
1 |
0 |
|a Process intensification :
|b engineering for efficiency, sustainability and flexibility /
|c David Reay, Colin Ramshaw, Adam Harvey.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a Oxford :
|b Butterworth-Heinemann,
|c 2013.
|
264 |
|
4 |
|c ©2013
|
300 |
|
|
|a 1 online resource (xxxi, 591 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Isotopes in Organic Chemistry
|
500 |
|
|
|a Previous edition: 2008.
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|8 1.1\x
|a Machine generated contents note: ch. 1 A Brief History of Process Intensification -- 1.1. Introduction -- 1.2. Rotating boilers -- 1.2.1. The rotating boiler/turbine concept -- 1.2.2. NASA work on rotating boilers -- 1.3. The rotating heat pipe -- 1.3.1. Rotating air conditioning unit -- 1.4. The chemical process industry -- the process intensification breakthrough at ICI -- 1.5. Separators -- 1.5.1. The Podbielniak extractor -- 1.5.2. Centrifugal evaporators -- 1.5.3. The still of John Moss -- 1.5.4. Extraction research in Bulgaria -- 1.6. Reactors -- 1.6.1. Catalytic plate reactors -- 1.6.2. Polymerisation reactors -- 1.6.3. Rotating fluidised bed reactor -- 1.6.4. Reactors for space experiments -- 1.6.5. Towards perfect reactors -- 1.7. Non-chemical industry-related applications of rotating heat and mass transfer -- 1.7.1. Rotating heat transfer devices -- 1.8. Where are we today? -- 1.8.1. Clean technologies -- 1.8.2. Integration of process intensification and renewable energies -- 1.8.3. PI and carbon capture -- 1.9. Summary -- References -- ch. 2 Process Intensification -- An Overview -- 2.1. Introduction -- 2.2. What is process intensification? -- 2.3. The original ICI PI strategy -- 2.4. The advantages of PI -- 2.4.1. Safety -- 2.4.2. The environment -- 2.4.3. Energy -- 2.4.4. The business process -- 2.5. Some obstacles to PI -- 2.6.A way forward -- 2.7. To whet the reader's appetite -- 2.8. Equipment summary -- finding your way around this book -- 2.9. Summary -- References -- ch. 3 The Mechanisms Involved in Process Intensification -- 3.1. Introduction -- 3.2. Intensified heat transfer -- the mechanisms involved -- 3.2.1. Classification of enhancement techniques -- 3.2.2. Passive enhancement techniques -- 3.2.3. Active enhancement methods -- 3.2.4. System impact of enhancement/intensification -- 3.3. Intensified mass transfer -- the mechanisms involved -- 3.3.1. Rotation -- 3.3.2. Vibration -- 3.3.3. Mixing -- 3.4. Electrically enhanced processes -- the mechanisms -- 3.5. Micro fluidics -- 3.5.1. Electrokinetics -- 3.5.2. Magnetohydrodynamics (MHD) -- 3.5.3. Opto-micro-fluidics -- 3.6. Pressure -- 3.7. Summary -- References -- ch. 4 Compact and Micro-heat Exchangers -- 4.1. Introduction -- 4.2.Compact heat exchangers -- 4.2.1. The plate heat exchanger -- 4.2.2. Printed circuit heat exchangers (PCHE) -- 4.2.3. The Chart-flo heat exchanger -- 4.2.4. Polymer film heat exchanger -- 4.2.5. Foam heat exchangers -- 4.2.6. Mesh heat exchangers -- 4.3. Micro-heat exchangers -- 4.4. What about small channels? -- 4.5. Nano-fluids -- 4.6. Summary -- References -- ch. 5 Reactors -- 5.1. Reactor engineering theory -- 5.1.1. Reaction kinetics -- 5.1.2. Residence time distributions (RTDs) -- 5.1.3. Heat and mass transfer in reactors -- 5.2. Spinning disc reactors -- 5.2.1. Exploitation of centrifugal fields -- 5.2.2. The desktop continuous process -- 5.2.3. The spinning disc reactor -- 5.2.4. The Nusselt flow model -- 5.2.5. Mass transfer -- 5.2.6. Heat transfer -- 5.2.7. Film-flow instability -- 5.2.8. Film-flow studies -- 5.2.9. Heat/mass transfer performance -- 5.2.10. Spinning disc reactor applications -- 5.3. Other rotating reactors -- 5.3.1. Rotor stator reactors: the STT reactor -- 5.3.2. Taylor-Couette reactor -- 5.3.3. Rotating packed-bed reactors -- 5.4. Oscillatory baffled reactors (OBRs) -- 5.4.1. Gas-liquid systems -- 5.4.2. Liquid-liquid systems -- 5.4.3. Heat transfer -- 5.4.4. OBR design -- 5.4.5. Biological applications -- 5.4.6. Solids suspension -- 5.4.7. Crystallisation -- 5.4.8. Oscillatory mesoreactors: scaling OBRs down -- 5.4.9. Case study -- 5.5. Micro-reactors (including HEX-reactors) -- 5.5.1. The catalytic plate reactor (CPR) -- 5.5.2. HEX-reactors -- 5.5.3. The corning micro-structured reactor -- 5.5.4. Constant power reactors -- 5.6. Field-enhanced reactions/reactors -- 5.6.1. Induction-heated reactor -- 5.6.2. Sonochemical reactors -- 5.6.3. Microwave enhancement -- 5.6.4. Plasma reactors -- 5.6.5. Laser-induced reactions -- 5.7. Reactive separations -- 5.7.1. Reactive distillation -- 5.7.2. Reactive extraction -- 5.7.3. Reactive adsorption -- 5.8. Membrane reactors -- 5.8.1. Tubular membrane reactor -- 5.8.2. Membrane slurry reactor -- 5.8.3. Biological applications of membrane reactors -- 5.9. Supercritical operation -- 5.9.1. Applications -- 5.10. Miscellaneous intensified reactor types -- 5.10.1. The Torbed reactor -- 5.10.2. Catalytic reactive extruders -- 5.10.3. Heat pipe reactors -- 5.11. Summary -- References -- ch. 6 Intensification of Separation Processes -- 6.1. Introduction -- 6.2. Distillation -- 6.2.1. Distillation -- dividing wall columns -- 6.2.2.Compact heat exchangers inside the column -- 6.2.3. Cyclic distillation systems -- 6.2.4. HiGee -- 6.3. Centrifuges -- 6.3.1. Conventional types -- 6.3.2. The gas centrifuge -- 6.4. Membranes -- 6.5. Drying -- 6.5.1. Electric drying and dewatering methods -- 6.5.2. Membranes for dehydration -- 6.6. Precipitation and crystallisation -- 6.6.1. The environment for particle formation -- 6.6.2. The spinning cone -- 6.6.3. Electric fields to aid crystallisation of thin films -- 6.7. Mop fan/deduster -- 6.7.1. Description of the equipment -- 6.7.2. Capture mechanism/efficiency -- 6.7.3. Applications -- 6.8. Electrolysis -- 6.8.1. Introduction -- 6.8.2. The effect of microgravity -- 6.8.3. The effect of high gravity -- 6.8.4. Current supply -- 6.8.5. Rotary electrolysis cell design -- 6.8.6. The static cell tests -- 6.8.7. The rotary cell experiments -- 6.9. Summary -- References -- ch. 7 Intensified Mixing -- 7.1. Introduction -- 7.2. Inline mixers -- 7.2.1. Static mixers -- 7.2.2. Ejectors -- 7.2.3. Rotor stator mixers -- 7.3. Mixing on a spinning disc -- 7.4. Induction-heated mixer -- 7.5. Summary -- References -- ch. 8 Application Areas -- Petrochemicals and Fine Chemicals -- 8.1. Introduction -- 8.2. Refineries -- 8.2.1. Catalytic plate reactor opportunities -- 8.2.2. More speculative opportunities -- 8.3. Bulk chemicals -- 8.3.1. Stripping and gas clean-up -- 8.3.2. Intensified methane reforming -- 8.3.3. The hydrocarbon chain -- 8.3.4. Reactive distillations for methyl and ethyl acetate -- 8.3.5. Formaldehyde from methanol using micro-reactors -- 8.3.6. Hydrogen peroxide production -- the Degussa PI route -- 8.3.7. Olefin hydroformylation -- use of a HEX-reactor -- 8.3.8. Polymerisation -- the use of spinning disc reactors -- 8.3.9. Akzo Nobel Chemicals -- reactive distillation -- 8.3.10. The gas turbine reactor -- a challenge for bulk chemical manufacture -- 8.3.11. Other bulk chemical applications in the literature -- 8.4. Fine chemicals and pharmaceuticals -- 8.4.1. Penicillin extraction -- 8.4.2. AstraZeneca work on continuous reactors -- 8.4.3. Micro-reactor for barium sulphate production -- 8.4.4. Spinning disc reactor for barium carbonate production -- 8.4.5. Spinning disc reactor for producing a drug intermediate -- 8.4.6. SDR in the fragrance industry -- 8.4.7.A continuous flow microwave reactor for production -- 8.4.8. Ultrasound and the intensification of micro-encapsulation -- 8.4.9. Powder coating technology -- Akzo Nobel powder coatings Ltd -- 8.4.10. Chiral amines -- scaling up in the Coflore flow reactor -- 8.4.11. Plant-wide PI in pharmaceuticals -- 8.5. Bioprocessing or processing of bioderived feedstock -- 8.5.1. Transesterification of vegetable oils -- 8.5.2. Bioethanol to ethylene in a micro-reactor -- 8.5.3. Base chemicals produced from biomass -- 8.6. Intensified carbon capture -- 8.6.1. Introduction -- 8.6.2. Carbon capture methods -- 8.6.3. Intensification of post-combustion carbon capture -- 8.6.4. Intensification of carbon capture using other techniques -- 8.7. Further reading -- 8.8. Summary -- References -- ch. 9 Application Areas -- Offshore Processing -- 9.1. Introduction -- 9.2. Some offshore scenarios -- 9.2.1.A view from BP a decade ago -- 9.2.2. More recent observations -- those of ConocoPhillips -- 9.2.3. One 2007 scenario -- 9.3. Offshore on platforms or subsea -- 9.3.1. Setting the scene -- 9.3.2. Down hole heavy crude oil processing -- 9.3.3.Compact heat exchangers offshore (and onshore) -- 9.3.4. Extending the PCHE concept to reactors -- 9.3.5. HiGee for enhanced oil recovery -- surfactant synthesis -- 9.3.6. Deoxygenation using high gravity fields -- 9.3.7. RF heating to recover oil from shale -- 9.4. Floating production, storage and offloading systems (FPSO) activities -- 9.5.
|
505 |
0 |
|
|a Safety offshore -- can PI help? -- 9.6. Summary -- References -- ch. 10 Application Areas -- Miscellaneous Process Industries -- 10.1. Introduction -- 10.2. The nuclear industry -- 10.2.1. Highly compact heat exchangers for reactors -- 10.2.2. Nuclear reprocessing -- 10.2.3. Uranium enrichment by centrifuge -- 10.3. The food and drink sector -- 10.3.1. Barrier to PI -- 10.3.2. Sector characteristics -- 10.3.3. Induction-heated mixers -- 10.3.4. Electric fields for drying and cooking -- 10.3.5. Spinning discs in the food sector -- 10.3.6. Deaeration systems for beverage packaging -- 10.3.7. Intensified refrigeration -- 10.3.8. Pursuit dynamics intensified mixing -- 10.3.9. The Torbed reactor in food processing -- 10.4. Textiles -- 10.4.1. Textile preparation -- 10.4.2. Textile finishing -- 10.4.3. Textile effluent treatment -- 10.4.4. Laundry processes -- 10.4.5. Leather production -- 10.5. The metallurgical and glass industries -- 10.5.1. The metallurgical sector -- 10.5.2. The glass and ceramics industry -- 10.6. Aerospace -- 10.7. Biotechnology -- 10.7.1. Biodiesel production -- 10.7.2. Waste/effluent treatment -- 10.8. Summary -- References -- ch. 11 Application Areas -- the Built Environment, Electronics, and the Home -- 11.1. Introduction -- 11.2. Refrigeration/heat pumping -- 11.2.1. The Rotex chiller/heat pump -- 11.2.2.Compact heat exchangers in heat pumps -- 11.2.3. Micro-refrigerator for chip cooling -- 11.2.4. Absorption and adsorption cycles -- 11.3. Power generation -- 11.3.1. Miniature
|
590 |
|
|
|8 1.2\x
|a fuel cells -- 11.3.2. Micro turbines -- 11.3.3. Batteries -- 11.3.4. Pumps -- 11.3.5. Energy scavenging -- 11.4. Microelectronics -- 11.4.1. Micro-fluidics -- 11.4.2. Micro-heat pipes -- electronics thermal control -- 11.5. Summary -- References
|
505 |
0 |
|
|a Note continued: ch. 12 Specifying, Manufacturing and Operating PI Plant -- 12.1. Introduction -- 12.2. Various approaches to adopting PI -- 12.2.1. Process integration -- 12.2.2. Britest process innovation -- 12.2.3. Process analysis and development -- a German approach -- 12.3. Initial assessment -- 12.3.1. Know your current process -- 12.3.2. Identify process limiting factors -- 12.3.3. Some key questions to address -- 12.4. Equipment specification -- 12.4.1. Concerns about fouling -- 12.4.2. Factors affecting control and their relevance to PI plant -- 12.4.3. Try it out! -- 12.5. Installation features of PI plant -- 12.6. Pointers to the successful operation of PI plant -- 12.7. The systematic approach to selecting PI technology -- 12.7.1.A process intensification methodology -- 12.8. The ultimate goal -- whole plant intensification -- 12.9. Learning from experience -- 12.10. Summary -- References -- Appendix: Applications of the PI Methodology -- 12.11.1. Case Studies 1-4 -- Appendix 1 Abbreviations Used -- Appendix 2 Nomenclature -- Appendix 3 Equipment Suppliers -- Appendix 4 R & D Organisations, Consultants and Miscellaneous Groups Active in PI -- Appendix 5 A Selection of Other Useful Contact Points, Including Networks and Websites.
|
520 |
|
|
|a This book provides a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Chemical process control.
|
650 |
|
0 |
|a Chemical processes
|x Environmental aspects.
|
650 |
|
6 |
|a Procédés chimiques
|x Contrôle.
|
650 |
|
6 |
|a Procédés chimiques
|x Aspect de l'environnement.
|
650 |
|
7 |
|a SCIENCE
|x Chemistry
|x Industrial & Technical.
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Chemical & Biochemical.
|2 bisacsh
|
650 |
|
7 |
|a Chemical process control.
|2 fast
|0 (OCoLC)fst00853144
|
650 |
|
7 |
|a Chemical processes
|x Environmental aspects.
|2 fast
|0 (OCoLC)fst00853163
|
700 |
1 |
|
|a Ramshaw, C.
|q (Colin),
|e author.
|
700 |
1 |
|
|a Harvey, Adam
|q (Adam P.),
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Reay, D.A. (David Anthony).
|t Process intensification.
|b 2nd edition
|z 9780080983042
|w (OCoLC)829055525
|
830 |
|
0 |
|a Isotopes in organic chemistry.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=486200
|z Texto completo
|
938 |
|
|
|a 123Library
|b 123L
|n 102446
|
938 |
|
|
|a Books 24x7
|b B247
|n bke00054013
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1211754
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 486200
|
938 |
|
|
|a Cengage Learning
|b GVRL
|n GVRL8DPD
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10759635
|
994 |
|
|
|a 92
|b IZTAP
|