Cargando…

Hadamard Expansions and Hyperasymptotic Evaluation : an Extension of the Method of Steepest Descents /

"The author describes the recently developed theory of Hadamard expansions applied to the high-precision (hyperasymptotic) evaluation of Laplace and Laplace-type integrals. This brand new method builds on the well-known asymptotic method of steepest descents, of which the opening chapter gives...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Paris, R. B. (Richard Bruce), 1946-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2011, ©2011.
Colección:Encyclopedia of mathematics and its applications ; v. 141.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn847526828
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130610s2011 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d CAMBR  |d YDXCP  |d IDEBK  |d OCLCF  |d EBLCP  |d DEBSZ  |d EUX  |d OCLCQ  |d UAB  |d OCLCQ  |d COCUF  |d STF  |d MERUC  |d ZCU  |d ICG  |d K6U  |d LOA  |d VT2  |d U3W  |d OCLCQ  |d WYU  |d LVT  |d TKN  |d DKC  |d AGLDB  |d SNK  |d BTN  |d MHW  |d INTCL  |d AUW  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d CEF  |d CUY  |d UX1  |d A6Q  |d S8J  |d G3B  |d UWK  |d OCLCQ  |d ADU  |d OCLCQ  |d SFB  |d ESU  |d RC0  |d UKCRE  |d AUD  |d CN6UV  |d DGN  |d VLY  |d LUN  |d AJS  |d S2H  |d SDF  |d HS0  |d OCLCQ  |d OCLCO  |d REDDC  |d CNNOR  |d UPM  |d OCLCQ  |d RDF  |d DST  |d OCLCO  |d SGP  |d LUU  |d SHC  |d OCLCQ  |d OCLCO 
066 |c (N  |c (S 
019 |a 841397295  |a 850149014  |a 985178117  |a 985402480  |a 1042886566  |a 1043677168  |a 1058848857  |a 1066437836  |a 1076642978  |a 1081198743  |a 1097121258  |a 1162570078  |a 1170090990  |a 1170892395  |a 1228537936  |a 1241847583  |a 1259085868 
020 |a 9781107089853  |q (electronic bk.) 
020 |a 1107089859  |q (electronic bk.) 
020 |a 9780511753626  |q (electronic bk.) 
020 |a 0511753624  |q (electronic bk.) 
020 |a 9781107096134 
020 |a 1107096138 
020 |a 9781107101722  |q (e-book) 
020 |a 1107101727 
020 |a 9781107101722 
020 |z 9781107002586 
020 |z 1107002583 
020 |a 1139887246 
020 |a 9781139887243 
020 |a 1107104165 
020 |a 9781107104167 
020 |a 1107093066 
020 |a 9781107093065 
029 1 |a DEBSZ  |b 384345026 
035 |a (OCoLC)847526828  |z (OCoLC)841397295  |z (OCoLC)850149014  |z (OCoLC)985178117  |z (OCoLC)985402480  |z (OCoLC)1042886566  |z (OCoLC)1043677168  |z (OCoLC)1058848857  |z (OCoLC)1066437836  |z (OCoLC)1076642978  |z (OCoLC)1081198743  |z (OCoLC)1097121258  |z (OCoLC)1162570078  |z (OCoLC)1170090990  |z (OCoLC)1170892395  |z (OCoLC)1228537936  |z (OCoLC)1241847583  |z (OCoLC)1259085868 
050 4 |a QA431  |b .P287 2011eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.45  |2 22 
084 |a MAT002010  |2 bisacsh 
049 |a UAMI 
100 1 |a Paris, R. B.  |q (Richard Bruce),  |d 1946- 
245 1 0 |a Hadamard Expansions and Hyperasymptotic Evaluation :  |b an Extension of the Method of Steepest Descents /  |c R.B. Paris. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2011, ©2011. 
300 |a 1 online resource (viii, 243 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Encyclopedia of Mathematics And Its Applications ;  |v 141 
520 |a "The author describes the recently developed theory of Hadamard expansions applied to the high-precision (hyperasymptotic) evaluation of Laplace and Laplace-type integrals. This brand new method builds on the well-known asymptotic method of steepest descents, of which the opening chapter gives a detailed account illustrated by a series of examples of increasing complexity. A discussion of uniformity problems associated with various coalescence phenomena, the Stokes phenomenon and hyperasymptotics of Laplace-type integrals follows. The remaining chapters deal with the Hadamard expansion of Laplace integrals, with and without saddle points. Problems of different types of saddle coalescence are also discussed. The text is illustrated with many numerical examples, which help the reader to understand the level of accuracy achievable. The author also considers applications to some important special functions. This book is ideal for graduate students and researchers working in asymptotics"--  |c Provided by publisher 
504 |a Includes bibliographical references (pages 235-240) and index. 
505 0 |a Preface; 1. Asymptotics of Laplace-type integrals; 2. Hadamard expansion of Laplace integrals; 3. Hadamard expansion of Laplace-type integrals; 4. Applications. 
588 0 |a Print version record. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Integral equations  |x Asymptotic theory. 
650 0 |a Asymptotic expansions. 
650 4 |a Integral equations  |x Asymptotic theory. 
650 4 |a Asymptotic expansions. 
650 6 |a Équations intégrales  |x Théorie asymptotique. 
650 6 |a Développements asymptotiques. 
650 7 |a MATHEMATICS  |x Algebra  |x Abstract.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Asymptotic expansions  |2 fast 
650 7 |a Integral equations  |x Asymptotic theory  |2 fast 
776 0 8 |i Print version:  |a Paris, R.B. (Richard Bruce), 1946-  |t Hadamard Expansions and Hyperasymptotic Evaluation.  |d Cambridge ; New York : Cambridge University Press, 2011, ©2011  |z 9781107002586  |w (DLC) 2010051563  |w (OCoLC)694393863 
830 0 |a Encyclopedia of mathematics and its applications ;  |v v. 141. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569364  |z Texto completo 
880 0 |6 505-00/(S  |a Cover -- Half Title -- Series Page -- Title -- Copyright -- Contents -- Preface -- 1 Asymptotics of Laplace-type integrals -- 1.1 Historical introduction -- 1.2 The method of steepest descents -- 1.2.1 Preliminaries -- 1.2.2 Asymptotic expansion of I (λ) -- 1.2.3 Quadratic and linear endpoint cases -- 1.2.4 Watson's lemma -- 1.2.5 Approximate methods -- The saddle-point method -- The method of stationary phase -- 1.3 Examples -- 1.4 Further examples -- 1.5 Uniform expansions -- 1.5.1 Saddle point near a pole -- 1.5.2 Saddle point near an endpoint -- 1.5.3 Two coalescing saddle points -- 1.6 Optimal truncation and superasymptotics -- 1.6.1 Optimal truncation -- 1.6.2 Ursell's lemma -- 1.7 The Stokes phenomenon -- 1.7.1 Description of the Stokes phenomenon -- 1.7.2 A rigorous approach -- 1.7.3 The Stokes phenomenon and steepest descents -- 1.8 Hyperasymptotics -- 1.8.1 Overview -- 1.8.2 Airey's converging factors -- 1.8.3 Dingle's converging factors -- 1.8.4 A formal discussion of hyperasymptotics -- 1.8.5 Truncation schemes -- 1.8.6 Hyperasymptotics of Laplace-type integrals -- 2 Hadamard expansion of Laplace integrals -- 2.1 Introduction -- 2.2 The Hadamard series for Iν(x) -- 2.2.1 Derivation of the single-stage expansion -- 2.2.2 The modified Hadamard series -- 2.2.3 The Hadamard series for complex z -- 2.2.4 Multi-stage expansions for Iν(z) -- 2.2.5 The Stokes phenomenon -- 2.2.6 The Hadamard series for 1F1(a -- a + b -- z) -- 2.3 Rapidly convergent Hadamard series -- 2.4 Hadamard series on an infinite interval -- 2.4.1 Subdivision of the integration path -- 2.4.2 The Hadamard expansion -- 2.4.3 Choice of the Ωn -- 2.4.4 A numerical example -- 2.4.5 A computational simplification -- 2.5 Examples -- 2.6 Bounds on the tails of Hadamard series -- 3 Hadamard expansion of Laplace-type integrals -- 3.1 Introduction -- 3.2 Expansion schemes. 
880 8 |6 505-00/(S  |a 3.2.1 Subdivision of the u-axis -- 3.2.2 Expansion Scheme A -- 3.2.3 Expansion Scheme B -- 3.3 Examples -- Hadamard expansion near the Stokes line -- 3.4 Coalescence problems -- 3.4.1 Expansion scheme for coalescence problems -- 3.5 Examples of coalescence -- 4 Applications -- 4.1 Introduction -- 4.2 The Bessel function Jν(νz) -- 4.2.1 The case z positive -- 4.2.2 Numerical results -- 4.2.3 The case x -̃ 1 -- 4.2.4 The case z complex -- 4.3 The Pearcey integral -- 4.3.1 The Hadamard expansion of Pe(x, y) -- 4.3.2 Computation in the neighbourhood of the cusps -- 4.4 The parabolic cylinder function -- 4.5 The expansion for log Г(z) -- Appendix A: Properties of P(a, z) -- Appendix B: Convergence of Hadamard series -- Appendix C: Connection with the exp-arc integrals -- References -- Index. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34201822 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385556 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1179122 
938 |a EBSCOhost  |b EBSC  |n 569364 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25780889 
938 |a YBP Library Services  |b YANK  |n 10350367 
938 |a YBP Library Services  |b YANK  |n 10760961 
938 |a YBP Library Services  |b YANK  |n 10794868 
938 |a YBP Library Services  |b YANK  |n 10759682 
994 |a 92  |b IZTAP