Integral closure of ideals, rings, and modules /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, UK :
Cambridge University Press,
2006.
|
Colección: | London Mathematical Society lecture note series ;
336. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Table of basic properties ix
- 1 What is integral closure of ideals? 1
- 1.1 Basic properties 2
- 1.2 Integral closure via reductions 5
- 1.3 Integral closure of an ideal is an ideal 6
- 1.4 Monomial ideals 9
- 1.5 Integral closure of rings 13
- 1.6 How integral closure arises 14
- 1.7 Dedekind-Mertens formula 17
- 2 Integral closure of rings 23
- 2.2 Lying-Over, Incomparability, Going-Up, Going-Down 30
- 2.3 Integral closure and grading 34
- 2.4 Rings of homomorphisms of ideals 39
- 3 Separability 47
- 3.1 Algebraic separability 47
- 3.2 General separability 48
- 3.3 Relative algebraic closure 52
- 4 Noetherian rings 56
- 4.1 Principal ideals 56
- 4.2 Normalization theorems 57
- 4.3 Complete rings 60
- 4.4 Jacobian ideals 63
- 4.5 Serre's conditions 70
- 4.6 Affine and Z-algebras 73
- 4.7 Absolute integral closure 77
- 4.8 Finite Lying-Over and height 79
- 4.9 Dimension one 83
- 4.10 Krull domains 85
- 5 Rees algebras 93
- 5.1 Rees algebra constructions 93
- 5.2 Integral closure of Rees algebras 95
- 5.3 Integral closure of powers of an ideal 97
- 5.4 Powers and formal equidimensionality 100
- 5.5 Defining equations of Rees algebras 104
- 5.6 Blowing up 108
- 6 Valuations 113
- 6.1 Valuations 113
- 6.2 Value groups and valuation rings 115
- 6.3 Existence of valuation rings 117
- 6.4 More properties of valuation rings 119
- 6.5 Valuation rings and completion 121
- 6.6 Some invariants 124
- 6.7 Examples of valuations 130
- 6.8 Valuations and the integral closure of ideals 133
- 6.9 The asymptotic Samuel function 138
- 7 Derivations 143
- 7.1 Analytic approach 143
- 7.2 Derivations and differentials 147
- 8 Reductions 150
- 8.1 Basic properties and examples 150
- 8.2 Connections with Rees algebras 154
- 8.3 Minimal reductions 155
- 8.4 Reducing to infinite residue fields 159
- 8.5 Superficial elements 160
- 8.6 Superficial sequences and reductions 165
- 8.7 Non-local rings 169
- 8.8 Sally's theorem on extensions 171
- 9 Analytically unramified rings 177
- 9.1 Rees's characterization 178
- 9.2 Module-finite integral closures 180
- 9.3 Divisorial valuations 182
- 10 Rees valuations 187
- 10.1 Uniqueness of Rees valuations 187
- 10.2 A construction of Rees valuations 191
- 10.4 Properties of Rees valuations 201
- 10.5 Rational powers of ideals 205
- 11 Multiplicity and integral closure 212
- 11.1 Hilbert-Samuel polynomials 212
- 11.2 Multiplicity 217
- 11.3 Rees's theorem 222
- 11.4 Equimultiple families of ideals 225
- 12 The conductor 234
- 12.1 A classical formula 235
- 12.2 One-dimensional rings 235
- 12.3 The Lipman-Sathaye theorem 237
- 13 The Briancon-Skoda Theorem 244
- 13.1 Tight closure 245
- 13.2 Briancon-Skoda via tight closure 248
- 13.3 The Lipman-Sathaye version 250
- 13.4 General version 253
- 14 Two-dimensional regular local rings 257
- 14.1 Full ideals 258
- 14.2 Quadratic transformations 263
- 14.3 The transform of an ideal 266
- 14.4 Zariski's theorems 268
- 14.5 A formula of Hoskin and Deligne 274
- 14.6 Simple integrally closed ideals 277
- 15 Computing integral closure 281
- 15.1 Method of Stolzenberg 282
- 15.2 Some computations 286
- 15.3 General algorithms 292
- 15.4 Monomial ideals 295
- 16 Integral dependence of modules 302
- 16.2 Using symmetric algebras 304
- 16.3 Using exterior algebras 307
- 16.4 Properties of integral closure of modules 309
- 16.5 Buchsbaum-Rim multiplicity 313
- 16.6 Height sensitivity of Koszul complexes 319
- 16.7 Absolute integral closures 321
- 16.8 Complexes acyclic up to integral closure 325
- 17 Joint reductions 331
- 17.1 Definition of joint reductions 331
- 17.2 Superficial elements 333
- 17.3 Existence of joint reductions 335
- 17.4 Mixed multiplicities 338
- 17.5 More manipulations of mixed multiplicities 344
- 17.6 Converse of Rees's multiplicity theorem 348
- 17.7 Minkowski inequality 350
- 17.8 The Rees-Sally formulation and the core 353
- 18 Adjoints of ideals 360
- 18.1 Basic facts about adjoints 360
- 18.2 Adjoints and the Briancon-Skoda Theorem 362
- 18.3 Background for computation of adjoints 364
- 18.4 Adjoints of monomial ideals 366
- 18.5 Adjoints in two-dimensional regular rings 369
- 18.6 Mapping cones 372
- 18.7 Analogs of adjoint ideals 375
- 19 Normal homomorphisms 378
- 19.1 Normal homomorphisms 379
- 19.2 Locally analytically unramified rings 381
- 19.3 Inductive limits of normal rings 383
- 19.4 Base change and normal rings 384
- 19.5 Integral closure and normal maps 388
- Appendix A Some background material 392
- A.1 Some forms of Prime Avoidance 392
- A.2 Caratheodory's theorem 392
- A.3 Grading 393
- A.4 Complexes 394
- A.5 Macaulay representation of numbers 396
- Appendix B Height and dimension formulas 397
- B.1 Going-Down, Lying-Over, flatness 397
- B.2 Dimension and height inequalities 398
- B.3 Dimension formula 399
- B.4 Formal equidimensionality 401
- B.5 Dimension Formula 403.