|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn847526761 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130610s2006 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d IDEBK
|d OCLCF
|d YDXCP
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9781107089303
|q (electronic bk.)
|
020 |
|
|
|a 1107089301
|q (electronic bk.)
|
020 |
|
|
|z 0521688604
|
020 |
|
|
|z 9780521688604
|
035 |
|
|
|a (OCoLC)847526761
|
050 |
|
4 |
|a QA251.3
|b .H86 2006eb
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
082 |
0 |
4 |
|a 512.44
|2 22
|
084 |
|
|
|a 31.23
|2 bcl
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Huneke, C.
|q (Craig)
|
245 |
1 |
0 |
|a Integral closure of ideals, rings, and modules /
|c Craig Huneke, Irena Swanson.
|
260 |
|
|
|a Cambridge, UK :
|b Cambridge University Press,
|c 2006.
|
300 |
|
|
|a 1 online resource (xiv, 431 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 336
|
504 |
|
|
|a Includes bibliographical references (pages 405-421) and index.
|
505 |
0 |
0 |
|t Table of basic properties
|g ix --
|g 1
|t What is integral closure of ideals?
|g 1 --
|g 1.1
|t Basic properties
|g 2 --
|g 1.2
|t Integral closure via reductions
|g 5 --
|g 1.3
|t Integral closure of an ideal is an ideal
|g 6 --
|g 1.4
|t Monomial ideals
|g 9 --
|g 1.5
|t Integral closure of rings
|g 13 --
|g 1.6
|t How integral closure arises
|g 14 --
|g 1.7
|t Dedekind-Mertens formula
|g 17 --
|g 2
|t Integral closure of rings
|g 23 --
|g 2.2
|t Lying-Over, Incomparability, Going-Up, Going-Down
|g 30 --
|g 2.3
|t Integral closure and grading
|g 34 --
|g 2.4
|t Rings of homomorphisms of ideals
|g 39 --
|g 3
|t Separability
|g 47 --
|g 3.1
|t Algebraic separability
|g 47 --
|g 3.2
|t General separability
|g 48 --
|g 3.3
|t Relative algebraic closure
|g 52 --
|g 4
|t Noetherian rings
|g 56 --
|g 4.1
|t Principal ideals
|g 56 --
|g 4.2
|t Normalization theorems
|g 57 --
|g 4.3
|t Complete rings
|g 60 --
|g 4.4
|t Jacobian ideals
|g 63 --
|g 4.5
|t Serre's conditions
|g 70 --
|g 4.6
|t Affine and Z-algebras
|g 73 --
|g 4.7
|t Absolute integral closure
|g 77 --
|g 4.8
|t Finite Lying-Over and height
|g 79 --
|g 4.9
|t Dimension one
|g 83 --
|g 4.10
|t Krull domains
|g 85 --
|g 5
|t Rees algebras
|g 93 --
|g 5.1
|t Rees algebra constructions
|g 93 --
|g 5.2
|t Integral closure of Rees algebras
|g 95 --
|g 5.3
|t Integral closure of powers of an ideal
|g 97 --
|g 5.4
|t Powers and formal equidimensionality
|g 100 --
|g 5.5
|t Defining equations of Rees algebras
|g 104 --
|g 5.6
|t Blowing up
|g 108 --
|g 6
|t Valuations
|g 113 --
|g 6.1
|t Valuations
|g 113 --
|g 6.2
|t Value groups and valuation rings
|g 115 --
|g 6.3
|t Existence of valuation rings
|g 117 --
|g 6.4
|t More properties of valuation rings
|g 119 --
|g 6.5
|t Valuation rings and completion
|g 121 --
|g 6.6
|t Some invariants
|g 124 --
|g 6.7
|t Examples of valuations
|g 130 --
|g 6.8
|t Valuations and the integral closure of ideals
|g 133 --
|g 6.9
|t The asymptotic Samuel function
|g 138 --
|g 7
|t Derivations
|g 143 --
|g 7.1
|t Analytic approach
|g 143 --
|g 7.2
|t Derivations and differentials
|g 147 --
|g 8
|t Reductions
|g 150 --
|g 8.1
|t Basic properties and examples
|g 150 --
|g 8.2
|t Connections with Rees algebras
|g 154 --
|g 8.3
|t Minimal reductions
|g 155 --
|g 8.4
|t Reducing to infinite residue fields
|g 159 --
|g 8.5
|t Superficial elements
|g 160 --
|g 8.6
|t Superficial sequences and reductions
|g 165 --
|g 8.7
|t Non-local rings
|g 169 --
|g 8.8
|t Sally's theorem on extensions
|g 171 --
|g 9
|t Analytically unramified rings
|g 177 --
|g 9.1
|t Rees's characterization
|g 178 --
|g 9.2
|t Module-finite integral closures
|g 180 --
|g 9.3
|t Divisorial valuations
|g 182 --
|g 10
|t Rees valuations
|g 187 --
|g 10.1
|t Uniqueness of Rees valuations
|g 187 --
|g 10.2
|t A construction of Rees valuations
|g 191 --
|g 10.4
|t Properties of Rees valuations
|g 201 --
|g 10.5
|t Rational powers of ideals
|g 205 --
|g 11
|t Multiplicity and integral closure
|g 212 --
|g 11.1
|t Hilbert-Samuel polynomials
|g 212 --
|g 11.2
|t Multiplicity
|g 217 --
|g 11.3
|t Rees's theorem
|g 222 --
|g 11.4
|t Equimultiple families of ideals
|g 225 --
|g 12
|t The conductor
|g 234 --
|g 12.1
|t A classical formula
|g 235 --
|g 12.2
|t One-dimensional rings
|g 235 --
|g 12.3
|t The Lipman-Sathaye theorem
|g 237 --
|g 13
|t The Briancon-Skoda Theorem
|g 244 --
|g 13.1
|t Tight closure
|g 245 --
|g 13.2
|t Briancon-Skoda via tight closure
|g 248 --
|g 13.3
|t The Lipman-Sathaye version
|g 250 --
|g 13.4
|t General version
|g 253 --
|g 14
|t Two-dimensional regular local rings
|g 257 --
|g 14.1
|t Full ideals
|g 258 --
|g 14.2
|t Quadratic transformations
|g 263 --
|g 14.3
|t The transform of an ideal
|g 266 --
|g 14.4
|t Zariski's theorems
|g 268 --
|g 14.5
|t A formula of Hoskin and Deligne
|g 274 --
|g 14.6
|t Simple integrally closed ideals
|g 277 --
|g 15
|t Computing integral closure
|g 281 --
|g 15.1
|t Method of Stolzenberg
|g 282 --
|g 15.2
|t Some computations
|g 286 --
|g 15.3
|t General algorithms
|g 292 --
|g 15.4
|t Monomial ideals
|g 295 --
|g 16
|t Integral dependence of modules
|g 302 --
|g 16.2
|t Using symmetric algebras
|g 304 --
|g 16.3
|t Using exterior algebras
|g 307 --
|g 16.4
|t Properties of integral closure of modules
|g 309 --
|g 16.5
|t Buchsbaum-Rim multiplicity
|g 313 --
|g 16.6
|t Height sensitivity of Koszul complexes
|g 319 --
|g 16.7
|t Absolute integral closures
|g 321 --
|g 16.8
|t Complexes acyclic up to integral closure
|g 325 --
|g 17
|t Joint reductions
|g 331 --
|g 17.1
|t Definition of joint reductions
|g 331 --
|g 17.2
|t Superficial elements
|g 333 --
|g 17.3
|t Existence of joint reductions
|g 335 --
|g 17.4
|t Mixed multiplicities
|g 338 --
|g 17.5
|t More manipulations of mixed multiplicities
|g 344 --
|g 17.6
|t Converse of Rees's multiplicity theorem
|g 348 --
|g 17.7
|t Minkowski inequality
|g 350 --
|g 17.8
|t The Rees-Sally formulation and the core
|g 353 --
|g 18
|t Adjoints of ideals
|g 360 --
|g 18.1
|t Basic facts about adjoints
|g 360 --
|g 18.2
|t Adjoints and the Briancon-Skoda Theorem
|g 362 --
|g 18.3
|t Background for computation of adjoints
|g 364 --
|g 18.4
|t Adjoints of monomial ideals
|g 366 --
|g 18.5
|t Adjoints in two-dimensional regular rings
|g 369 --
|g 18.6
|t Mapping cones
|g 372 --
|g 18.7
|t Analogs of adjoint ideals
|g 375 --
|g 19
|t Normal homomorphisms
|g 378 --
|g 19.1
|t Normal homomorphisms
|g 379 --
|g 19.2
|t Locally analytically unramified rings
|g 381 --
|g 19.3
|t Inductive limits of normal rings
|g 383 --
|g 19.4
|t Base change and normal rings
|g 384 --
|g 19.5
|t Integral closure and normal maps
|g 388 --
|g Appendix
|t A Some background material
|g 392 --
|g A.1
|t Some forms of Prime Avoidance
|g 392 --
|g A.2
|t Caratheodory's theorem
|g 392 --
|g A.3
|t Grading
|g 393 --
|g A.4
|t Complexes
|g 394 --
|g A.5
|t Macaulay representation of numbers
|g 396 --
|g Appendix B
|t Height and dimension formulas
|g 397 --
|g B.1
|t Going-Down, Lying-Over, flatness
|g 397 --
|g B.2
|t Dimension and height inequalities
|g 398 --
|g B.3
|t Dimension formula
|g 399 --
|g B.4
|t Formal equidimensionality
|g 401 --
|g B.5
|t Dimension Formula
|g 403.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Integral closure.
|
650 |
|
0 |
|a Ideals (Algebra)
|
650 |
|
0 |
|a Commutative rings.
|
650 |
|
0 |
|a Modules (Algebra)
|
650 |
|
6 |
|a Fermeture intégrale.
|
650 |
|
6 |
|a Idéaux (Algèbre)
|
650 |
|
6 |
|a Anneaux commutatifs.
|
650 |
|
6 |
|a Modules (Algèbre)
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a Commutative rings
|2 fast
|
650 |
|
7 |
|a Ideals (Algebra)
|2 fast
|
650 |
|
7 |
|a Integral closure
|2 fast
|
650 |
|
7 |
|a Modules (Algebra)
|2 fast
|
700 |
1 |
|
|a Swanson, Irena.
|
776 |
0 |
8 |
|i Print version:
|a Huneke, C. (Craig).
|t Integral closure of ideals, rings, and modules.
|d Cambridge, UK : Cambridge University Press, 2006
|z 0521688604
|w (DLC) 2007295090
|w (OCoLC)73458763
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 336.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569260
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26478514
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 569260
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25780772
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10759670
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10760949
|
994 |
|
|
|a 92
|b IZTAP
|