|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn846507613 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130603s2013 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d YDXCP
|d STF
|d COO
|d OCLCQ
|d EBLCP
|d OCLCF
|d OCLCQ
|d STBDS
|d OCLCQ
|d YOU
|d AU@
|d OCLCQ
|d YDX
|d OCLCQ
|d OCLCO
|d SFB
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 922971721
|
020 |
|
|
|a 9780191669774
|q (electronic bk.)
|
020 |
|
|
|a 0191669776
|q (electronic bk.)
|
020 |
|
|
|a 9780191760235
|q (ebook)
|
020 |
|
|
|a 0191760234
|q (ebook)
|
020 |
|
|
|a 9780199680290
|q (print)
|
020 |
|
|
|a 0199680299
|q (print)
|
029 |
1 |
|
|a DEBBG
|b BV043060329
|
029 |
1 |
|
|a DEBSZ
|b 446503673
|
029 |
1 |
|
|a NLGGC
|b 358144167
|
035 |
|
|
|a (OCoLC)846507613
|z (OCoLC)922971721
|
050 |
|
4 |
|a QA377
|b .R56 2013eb
|
072 |
|
7 |
|a MAT
|x 007020
|2 bisacsh
|
082 |
0 |
4 |
|a 515.353
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Ringström, Hans.
|
245 |
1 |
0 |
|a On the topology and future stability of the universe /
|c Hans Ringström.
|
260 |
|
|
|a Oxford :
|b Oxford University Press,
|c 2013.
|
300 |
|
|
|a 1 online resource (xiv, 718 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Oxford mathematical monographs
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from pdf information screen (Ebsco, viewed June 3, 2013).
|
520 |
8 |
|
|a A general introduction to the initial value problem for Einstein's equations coupled to collisionless matter. The book contains a proof of future stability of models of the universe consistent with the current observational data and a discussion of the restrictions on the possible shapes of the universe imposed by observations.
|
505 |
0 |
|
|a Contents -- PART I: PROLOGUE -- 1 Introduction -- 1.1 General remarks on the limits of observations -- 1.2 The standard models of the universe -- 1.3 Approximation by matter of Vlasov type -- 2 The Cauchy problem in general relativity -- 2.1 The initial value problem in general relativity -- 2.2 Spaces of initial data and associated distance concepts -- 2.3 Minimal degree of regularity ensuring local existence -- 2.4 On linearisations -- 3 The topology of the universe -- 3.1 An example of how to characterise topology by geometry
|
505 |
8 |
|
|a 3.2 Geometrisation of 3-manifolds3.3 A vacuum conjecture -- 4 Notions of proximity to spatial homogeneity and isotropy -- 4.1 Almost EGS theorems -- 4.2 On the relation between solutions with small spatial variation and spatially homogeneous solutions -- 5 Observational support for the standard model -- 5.1 Using observations to determine the cosmological parameters -- 5.2 Distance measurements -- 5.3 Supernovae observations -- 5.4 Concluding remarks -- 6 Concluding remarks -- 6.1 On the technical formulation of stability
|
505 |
8 |
|
|a 6.2 Notions of proximity to spatial homogeneity and isotropy6.3 Models of the universe with arbitrary closed spatial topology -- 6.4 The cosmological principle -- 6.5 Symmetry assumption -- PART II: INTRODUCTORY MATERIAL -- 7 Main results -- 7.1 Vlasov matter -- 7.2 Scalar field matter -- 7.3 The equations -- 7.4 The constraint equations -- 7.5 Previous results -- 7.6 Background solution and intuition -- 7.7 Drawing global conclusions from local assumptions -- 7.8 Stability of spatially homogeneous solutions
|
505 |
8 |
|
|a ""7.9 Limitations on the global topology imposed by local observations""""8 Outline, general theory of the Einstein�Vlasov system""; ""8.1 Main goals and issues""; ""8.2 Background""; ""8.3 Function spaces and estimates""; ""8.4 Existence, uniqueness and stability""; ""8.5 The Cauchy problem in general relativity""; ""9 Outline, main results""; ""9.1 Spatially homogeneous solutions""; ""9.2 Stability in the n-torus case""; ""9.3 Estimates for the Vlasov matter, future global existence and asymptotics""; ""9.4 Proof of the main results""; ""10 References to the literature and outlook""
|
505 |
8 |
|
|a 10.1 Local existence10.2 Generalisations -- 10.3 Potential improvements -- 10.4 References to the literature -- PART III: BACKGROUND AND BASIC CONSTRUCTIONS -- 11 Basic analysis estimates -- 11.1 Terminology concerning differentiation and weak derivatives -- 11.2 Weighted Sobolev spaces -- 11.3 Sobolev spaces on the torus -- 11.4 Sobolev spaces for distribution functions -- 11.5 Sobolev spaces corresponding to a non-integer number of derivatives -- 11.6 Basic analysis estimates -- 11.7 Locally x-compact support -- 12 Linear algebra
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Cauchy problem.
|
651 |
|
0 |
|a Universe.
|
650 |
|
6 |
|a Problème de Cauchy.
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x Partial.
|2 bisacsh
|
650 |
|
7 |
|a Cauchy problem
|2 fast
|
651 |
|
7 |
|a Universe
|2 fast
|
776 |
0 |
8 |
|i Print version
|z 9780199680290
|
830 |
|
0 |
|a Oxford mathematical monographs.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=579031
|z Texto completo
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 18045702
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3055298
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10700296
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 579031
|
938 |
|
|
|a Oxford University Press USA
|b OUPR
|n EDZ0000132363
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10712171
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10710689
|
994 |
|
|
|a 92
|b IZTAP
|