|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn846496057 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130603s2001 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d CAMBR
|d OCLCF
|d OCLCA
|d YDXCP
|d MHW
|d EBLCP
|d DEBSZ
|d OCLCQ
|d AGLDB
|d XFH
|d OCLCQ
|d HEBIS
|d OCLCO
|d UAB
|d OCLCQ
|d VTS
|d REC
|d STF
|d M8D
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 841393152
|a 845253438
|a 994555097
|
020 |
|
|
|a 9781107089297
|q (electronic bk.)
|
020 |
|
|
|a 1107089298
|q (electronic bk.)
|
020 |
|
|
|a 9781107325951
|q (electronic bk.)
|
020 |
|
|
|a 1107325951
|q (electronic bk.)
|
020 |
|
|
|a 9781107095540
|
020 |
|
|
|a 1107095549
|
020 |
|
|
|a 1299707203
|
020 |
|
|
|a 9781299707207
|
020 |
|
|
|z 0521665434
|
020 |
|
|
|z 9780521665438
|
029 |
1 |
|
|a AU@
|b 000052940694
|
029 |
1 |
|
|a DEBBG
|b BV043110955
|
029 |
1 |
|
|a DEBSZ
|b 38299910X
|
029 |
1 |
|
|a DEBSZ
|b 421262753
|
029 |
1 |
|
|a GBVCP
|b 804689199
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910052422805765
|
035 |
|
|
|a (OCoLC)846496057
|z (OCoLC)841393152
|z (OCoLC)845253438
|z (OCoLC)994555097
|
050 |
|
4 |
|a QA565
|b .N594 2001eb
|
072 |
|
7 |
|a MAT
|x 012010
|2 bisacsh
|
082 |
0 |
4 |
|a 516.3/52
|2 22
|
084 |
|
|
|a 31.24
|2 bcl
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Niederreiter, Harald,
|d 1944-
|
245 |
1 |
0 |
|a Rational points on curves over finite fields :
|b theory and applications /
|c Harald Niederreiter, Chaoping Xing.
|
260 |
|
|
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 2001.
|
300 |
|
|
|a 1 online resource (x, 245 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 285
|
504 |
|
|
|a Includes bibliographical references (pages 227-239) and index.
|
505 |
0 |
0 |
|t Background on Function Fields --
|t Riemann-Roch Theorem --
|t Divisor Class Groups and Ideal Class Groups --
|t Algebraic Extensions and the Hurwitz Formula --
|t Ramification Theory of Galois Extensions --
|t Constant Field Extensions --
|t Zeta Functions and Rational Places --
|t Class Field Theory --
|t Local Fields --
|t Newton Polygons --
|t Ramification Groups and Conductors --
|t Global Fields --
|t Ray Class Fields and Hilbert Class Fields --
|t Narrow Ray Class Fields --
|t Class Field Towers --
|t Explicit Function Fields --
|t Kummer and Artin-Schreier Extensions --
|t Cyclotomic Function Fields --
|t Drinfeld Modules of Rank 1 --
|t Function Fields with Many Rational Places --
|t Function Fields from Hilbert Class Fields --
|t Function Fields from Narrow Ray Class Fields --
|t The First Construction --
|t The Second Construction --
|t The Third Construction --
|t Function Fields from Cyclotomic Fields --
|t Explicit Function Fields --
|t Asymptotic Results --
|t Asymptotic Behavior of Towers --
|t The Lower Bound of Serre --
|t Further Lower Bounds for A(q[superscript m]) --
|t Explicit Towers --
|t Lower Bounds on A(2), A(3), and A(5) --
|t Applications to Algebraic Coding Theory --
|t Goppa's Algebraic-Geometry Codes --
|t Beating the Asymptotic Gilbert-Varshamov Bound --
|t NXL Codes --
|t XNL Codes --
|t A Propagation Rule for Linear Codes --
|t Applications to Cryptography --
|t Background on Stream Ciphers and Linear Complexity --
|t Constructions of Almost Perfect Sequences --
|t A Construction of Perfect Hash Families --
|t Hash Families and Authentication Schemes --
|t Applications to Low-Discrepancy Sequences.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Discussion of theory and applications of algebraic curves over finite fields with many rational points.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Curves, Algebraic.
|
650 |
|
0 |
|a Finite fields (Algebra)
|
650 |
|
0 |
|a Rational points (Geometry)
|
650 |
|
0 |
|a Coding theory.
|
650 |
|
6 |
|a Courbes algébriques.
|
650 |
|
6 |
|a Corps finis.
|
650 |
|
6 |
|a Codage.
|
650 |
|
6 |
|a Points rationnels (Géométrie)
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Algebraic.
|2 bisacsh
|
650 |
|
7 |
|a Coding theory
|2 fast
|
650 |
|
7 |
|a Curves, Algebraic
|2 fast
|
650 |
|
7 |
|a Finite fields (Algebra)
|2 fast
|
650 |
|
7 |
|a Rational points (Geometry)
|2 fast
|
650 |
|
7 |
|a Algebraische Kurve
|2 gnd
|
650 |
|
7 |
|a Algebraische Codierung
|2 gnd
|
650 |
|
7 |
|a Galois-Feld
|2 gnd
|
650 |
|
7 |
|a Rationaler Punkt
|2 gnd
|
650 |
1 |
7 |
|a Eindige lichamen.
|2 gtt
|
650 |
1 |
7 |
|a Krommen.
|2 gtt
|
650 |
|
7 |
|a Corpos de classe.
|2 larpcal
|
650 |
|
7 |
|a Teoria dos números.
|2 larpcal
|
650 |
|
7 |
|a Criptologia.
|2 larpcal
|
650 |
|
7 |
|a Computabilidade e complexidade.
|2 larpcal
|
650 |
|
7 |
|a Courbes algébriques.
|2 ram
|
650 |
|
7 |
|a Champs modulaires.
|2 ram
|
700 |
1 |
|
|a Xing, Chaoping,
|d 1963-
|
776 |
0 |
8 |
|i Print version:
|a Niederreiter, Harald, 1944-
|t Rational points on curves over finite fields.
|d Cambridge ; New York : Cambridge University Press, 2001
|z 0521665434
|w (DLC) 2001025570
|w (OCoLC)46402143
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 285.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569249
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25052489
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26385119
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1179115
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 569249
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10734787
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10440792
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10737460
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10762259
|
994 |
|
|
|a 92
|b IZTAP
|