Cargando…

Feynman diagram techniques in condensed matter physics /

"A concise introduction to Feynman diagram techniques, this book shows how they can be applied to the analysis of complex many-particle systems, and offers a review of the essential elements of quantum mechanics, solid state physics and statistical mechanics. Alongside a detailed account of the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jishi, Radi A., 1955-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface
  • 1 A brief review of quantum mechanics
  • 1.1 The postulates
  • (I) The quantum state
  • (II) Observables
  • (III) Time evolution
  • (IV) Measurements
  • (V) Wave function of a system of identical particles
  • 1.2 The harmonic oscillator
  • Further reading
  • Problems
  • 2 Single-particle states
  • 2.1 Introduction
  • 2.2 Electron gas
  • 2.3 Bloch states
  • 2.4 Example: one-dimensional lattice
  • 2.5 Wannier states
  • 2.6 Two-dimensional electron gas in a magnetic field
  • Further reading
  • Problems
  • 3 Second quantization
  • 3.1 N-particle wave function
  • 3.2 Properly symmetrized products as a basis set
  • 3.3 Three examples
  • 3.4 Creation and annihilation operators
  • 3.5 One-body operators
  • 3.6 Examples
  • 3.7 Two-body operators
  • 3.8 Translationally invariant system
  • 3.9 Example: Coulomb interaction
  • 3.10 Electrons in a periodic potential
  • 3.11 Field operators
  • Further reading
  • Problems
  • 4 The electron gas
  • 4.1 The Hamiltonian in the jellium model
  • 4.2 High density limit
  • 4.3 Ground state energy
  • Further reading
  • Problems
  • 5 A brief review of statistical mechanics
  • 5.1 The fundamental postulate of statistical mechanics
  • 5.2 Contact between statistics and thermodynamics
  • 5.3 Ensembles
  • 5.4 The statistical operator for a general ensemble
  • 5.5 Quantum distribution functions
  • Further reading
  • Problems
  • 6 Real-time Green's and correlation functions
  • 6.1 A plethora of functions
  • 6.2 Physical meaning of Green's functions
  • 6.3 Spin-independent Hamiltonian, translational invariance
  • 6.4 Spectral representation
  • 6.5 Example: Green's function of a noninteracting system
  • 6.6 Linear response theory
  • 6.7 Noninteracting electron gas in an external potential
  • 6.8 Dielectric function of a noninteracting electron gas.
  • 6.9 Paramagnetic susceptibility of a noninteracting electron gas
  • 6.10 Equation of motion
  • 6.11 Example: noninteracting electron gas
  • 6.12 Example: an atom adsorbed on graphene
  • Further reading
  • Problems
  • 7 Applications of real-time Green's functions
  • 7.1 Single-level quantum dot
  • 7.2 Quantum dot in contact with a metal: Anderson's model
  • 7.3 Tunneling in solids
  • Further reading
  • Problems
  • 8 Imaginary-time Green's and correlation functions
  • 8.1 Imaginary-time correlation function
  • 8.2 Imaginary-time Green's function
  • 8.3 Significance of the imaginary-time Green's function
  • 8.4 Spectral representation, relation to real-time functions
  • 8.5 Example: Green's function for noninteracting particles
  • 8.6 Example: Green's function for 2-DEG in a magnetic field
  • 8.7 Green's function and the U-operator
  • 8.8 Wick's theorem
  • 8.9 Case study: first-order interaction
  • 8.10 Cancellation of disconnected diagrams
  • Further reading
  • Problems
  • 9 Diagrammatic techniques
  • 9.1 Case study: second-order perturbation in a system of fermions
  • 9.2 Feynman rules in momentum-frequency space
  • 9.3 An example of how to apply Feynman rules
  • 9.4 Feynman rules in coordinate space
  • 9.5 Self energy and Dyson's equation
  • 9.6 Energy shift and the lifetime of excitations
  • 9.7 Time-ordered diagrams: a case study
  • 9.8 Time-ordered diagrams: Dzyaloshinski's rules
  • Further reading
  • Problems
  • 10 Electron gas: a diagrammatic approach
  • 10.1 Model Hamiltonian
  • 10.2 The need to go beyond first-order perturbation theory
  • 10.3 Second-order perturbation theory: still inadequate
  • 10.4 Classification of diagrams according to the degree of divergence
  • 10.5 Self energy in the random phase approximation (RPA)
  • 10.6 Summation of the ring diagrams
  • 10.7 Screened Coulomb interaction.
  • 10.8 Collective electronic density fluctuations
  • 10.9 How do electrons interact?
  • 10.10 Dielectric function
  • 10.11 Plasmons and Landau damping
  • 10.12 Case study: dielectric function of graphene
  • Further reading
  • Problems
  • 11 Phonons, photons, and electrons
  • 11.1 Lattice vibrations in one dimension
  • 11.2 One-dimensional diatomic lattice
  • 11.3 Phonons in three-dimensional crystals
  • 11.4 Phonon statistics
  • 11.5 Electron-phonon interaction: rigid-ion approximation
  • 11.6 Electron-LO phonon interaction in polar crystals
  • 11.7 Phonon Green's function
  • 11.8 Free-phonon Green's function
  • 11.9 Feynman rules for the electron-phonon interaction
  • 11.10 Electron self energy
  • 11.11 The electromagnetic field
  • 11.12 Electron-photon interaction
  • 11.13 Light scattering by crystals
  • 11.14 Raman scattering in insulators
  • Further reading
  • Problems
  • 12 Superconductivity
  • 12.1 Properties of superconductors
  • 12.2 The London equation
  • 12.3 Effective electron-electron interaction
  • 12.4 Cooper pairs
  • 12.5 BCS theory of superconductivity
  • 12.6 Mean field approach
  • 12.7 Green's function approach to superconductivity
  • 12.8 Determination of the transition temperature
  • 12.9 The Nambu formalism
  • 12.10 Response to a weak magnetic field
  • 12.11 Infinite conductivity
  • Further reading
  • Problems
  • 13 Nonequilibrium Green's function
  • 13.1 Introduction
  • 13.2 Schrodinger, Heisenberg, and interaction pictures
  • 13.3 The malady and the remedy
  • 13.4 Contour-ordered Green's function
  • 13.5 Kadanoff-Baym and Keldysh contours
  • 13.6 Dyson's equation
  • 13.7 Langreth rules
  • 13.8 Keldysh equations
  • 13.9 Steady-state transport
  • 13.10 Noninteracting quantum dot
  • 13.11 Coulomb blockade in the Anderson model
  • Further reading
  • Problems
  • Appendix A: Second quantized form of operators
  • A.1 Fermions.
  • A.2 Bosons
  • Appendix B: Completing the proof of Dzyaloshinski's rules
  • Appendix C: Lattice vibrations in three dimensions
  • C.1 Harmonic approximation
  • C.2 Classical theory of lattice vibrations
  • C.3 Vibrational energy
  • C.4 Quantum theory of lattice vibrations
  • Appendix D: Electron-phonon interaction in polar crystals
  • D.1 Polarization
  • D.2 Electron-LO phonon interaction
  • References
  • Index.