|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn846494987 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130603s1974 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d CAMBR
|d IDEBK
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d XFH
|d OCLCO
|d OCLCQ
|d UAB
|d OCLCQ
|d VTS
|d YDX
|d OCLCO
|d REC
|d OCLCO
|d STF
|d AU@
|d OCLCO
|d M8D
|d INARC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 841393157
|a 994346631
|
020 |
|
|
|a 9781107087033
|q (electronic bk.)
|
020 |
|
|
|a 1107087031
|q (electronic bk.)
|
020 |
|
|
|a 9780511662621
|q (electronic bk.)
|
020 |
|
|
|a 0511662629
|q (electronic bk.)
|
020 |
|
|
|a 1299706738
|
020 |
|
|
|a 9781299706736
|
020 |
|
|
|z 0521205263
|
020 |
|
|
|z 9780521205269
|
029 |
1 |
|
|a DEBBG
|b BV043095434
|
029 |
1 |
|
|a DEBSZ
|b 421262230
|
029 |
1 |
|
|a GBVCP
|b 804687234
|
035 |
|
|
|a (OCoLC)846494987
|z (OCoLC)841393157
|z (OCoLC)994346631
|
050 |
|
4 |
|a QA564
|b .S94 1974eb
|
072 |
|
7 |
|a MAT
|x 012010
|2 bisacsh
|
082 |
0 |
4 |
|a 516/.353
|2 22
|
084 |
|
|
|a SI 320
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Swinnerton-Dyer, H. P. F.
|
245 |
1 |
0 |
|a Analytic theory of Abelian varieties /
|c H.P.F. Swinnerton-Dyer.
|
260 |
|
|
|a Cambridge :
|b University Press,
|c 1974.
|
300 |
|
|
|a 1 online resource (vii, 90 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 14
|
504 |
|
|
|a Includes bibliographical references (pages 87-88) and index.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
520 |
|
|
|a The study of abelian manifolds forms a natural generalization of the theory of elliptic functions, that is, of doubly periodic functions of one complex variable. When an abelian manifold is embedded in a projective space it is termed an abelian variety in an algebraic geometrical sense. This introduction presupposes little more than a basic course in complex variables. The notes contain all the material on abelian manifolds needed for application to geometry and number theory, although they do not contain an exposition of either application. Some geometrical results are included however.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Abelian varieties.
|
650 |
|
0 |
|a Riemann surfaces.
|
650 |
|
0 |
|a Functions, Meromorphic.
|
650 |
|
6 |
|a Variétés abéliennes.
|
650 |
|
6 |
|a Surfaces de Riemann.
|
650 |
|
6 |
|a Fonctions méromorphes.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Algebraic.
|2 bisacsh
|
650 |
|
7 |
|a Abelian varieties
|2 fast
|
650 |
|
7 |
|a Functions, Meromorphic
|2 fast
|
650 |
|
7 |
|a Riemann surfaces
|2 fast
|
650 |
|
7 |
|a Abelsche Mannigfaltigkeit
|2 gnd
|
650 |
|
7 |
|a Variétés abéliennes.
|2 ram
|
650 |
|
7 |
|a Riemann, Surfaces de.
|2 ram
|
650 |
|
7 |
|a Fonctions méromorphes.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Swinnerton-Dyer, H.P.F.
|t Analytic theory of Abelian varieties.
|d Cambridge : University Press, 1974
|z 0521205263
|w (DLC) 74077835
|w (OCoLC)1195182
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 14.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569314
|z Texto completo
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 569314
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25780835
|
938 |
|
|
|a Internet Archive
|b INAR
|n analytictheoryof0000swin
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10440734
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10734733
|
994 |
|
|
|a 92
|b IZTAP
|