Cargando…

Analytic theory of Abelian varieties /

The study of abelian manifolds forms a natural generalization of the theory of elliptic functions, that is, of doubly periodic functions of one complex variable. When an abelian manifold is embedded in a projective space it is termed an abelian variety in an algebraic geometrical sense. This introdu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Swinnerton-Dyer, H. P. F.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : University Press, 1974.
Colección:London Mathematical Society lecture note series ; 14.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn846494987
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130603s1974 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d CAMBR  |d IDEBK  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d XFH  |d OCLCO  |d OCLCQ  |d UAB  |d OCLCQ  |d VTS  |d YDX  |d OCLCO  |d REC  |d OCLCO  |d STF  |d AU@  |d OCLCO  |d M8D  |d INARC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 841393157  |a 994346631 
020 |a 9781107087033  |q (electronic bk.) 
020 |a 1107087031  |q (electronic bk.) 
020 |a 9780511662621  |q (electronic bk.) 
020 |a 0511662629  |q (electronic bk.) 
020 |a 1299706738 
020 |a 9781299706736 
020 |z 0521205263 
020 |z 9780521205269 
029 1 |a DEBBG  |b BV043095434 
029 1 |a DEBSZ  |b 421262230 
029 1 |a GBVCP  |b 804687234 
035 |a (OCoLC)846494987  |z (OCoLC)841393157  |z (OCoLC)994346631 
050 4 |a QA564  |b .S94 1974eb 
072 7 |a MAT  |x 012010  |2 bisacsh 
082 0 4 |a 516/.353  |2 22 
084 |a SI 320  |2 rvk 
049 |a UAMI 
100 1 |a Swinnerton-Dyer, H. P. F. 
245 1 0 |a Analytic theory of Abelian varieties /  |c H.P.F. Swinnerton-Dyer. 
260 |a Cambridge :  |b University Press,  |c 1974. 
300 |a 1 online resource (vii, 90 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 14 
504 |a Includes bibliographical references (pages 87-88) and index. 
588 0 |a Print version record. 
546 |a English. 
520 |a The study of abelian manifolds forms a natural generalization of the theory of elliptic functions, that is, of doubly periodic functions of one complex variable. When an abelian manifold is embedded in a projective space it is termed an abelian variety in an algebraic geometrical sense. This introduction presupposes little more than a basic course in complex variables. The notes contain all the material on abelian manifolds needed for application to geometry and number theory, although they do not contain an exposition of either application. Some geometrical results are included however. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Abelian varieties. 
650 0 |a Riemann surfaces. 
650 0 |a Functions, Meromorphic. 
650 6 |a Variétés abéliennes. 
650 6 |a Surfaces de Riemann. 
650 6 |a Fonctions méromorphes. 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a Abelian varieties  |2 fast 
650 7 |a Functions, Meromorphic  |2 fast 
650 7 |a Riemann surfaces  |2 fast 
650 7 |a Abelsche Mannigfaltigkeit  |2 gnd 
650 7 |a Variétés abéliennes.  |2 ram 
650 7 |a Riemann, Surfaces de.  |2 ram 
650 7 |a Fonctions méromorphes.  |2 ram 
776 0 8 |i Print version:  |a Swinnerton-Dyer, H.P.F.  |t Analytic theory of Abelian varieties.  |d Cambridge : University Press, 1974  |z 0521205263  |w (DLC) 74077835  |w (OCoLC)1195182 
830 0 |a London Mathematical Society lecture note series ;  |v 14. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569314  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 569314 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25780835 
938 |a Internet Archive  |b INAR  |n analytictheoryof0000swin 
938 |a YBP Library Services  |b YANK  |n 10440734 
938 |a YBP Library Services  |b YANK  |n 10734733 
994 |a 92  |b IZTAP