Cargando…

Three classes of nonlinear stochastic partial differential equations /

The study of measure-valued processes in random environments has seen some intensive research activities in recent years whereby interesting nonlinear stochastic partial differential equations (SPDEs) were derived. Due to the nonlinearity and the non-Lipschitz continuity of their coefficients, new t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Xiong, Jie (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Hackensack] New Jersey : World Scientific, [2013]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn844311148
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mn|||||||||
008 091123t20132013nju ob 001 0 eng d
040 |a WSPC  |b eng  |e rda  |e pn  |c STF  |d N$T  |d YDXCP  |d E7B  |d OCLCF  |d OSU  |d IDEBK  |d CDX  |d GGVRL  |d DEBSZ  |d OCLCQ  |d COCUF  |d AGLDB  |d MOR  |d OCLCQ  |d JBG  |d OCLCQ  |d WRM  |d VTS  |d NRAMU  |d VT2  |d OCLCQ  |d WYU  |d STF  |d LEAUB  |d AU@  |d M8D  |d UKAHL  |d OCLCO  |d OCLCQ 
019 |a 847948802  |a 961651755 
020 |a 9789814452366  |q (electronic bk.) 
020 |a 981445236X  |q (electronic bk.) 
020 |a 9789814452359 
020 |a 9814452351 
020 |a 1299651844  |q (ebk) 
020 |a 9781299651845  |q (ebk) 
029 1 |a DEBBG  |b BV043035141 
029 1 |a DEBSZ  |b 421250615 
029 1 |a NZ1  |b 15197858 
035 |a (OCoLC)844311148  |z (OCoLC)847948802  |z (OCoLC)961651755 
037 |a 496434  |b MIL 
050 4 |a QA274.25  |b .X57 2013eb 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2  |2 22 
049 |a UAMI 
100 1 |a Xiong, Jie,  |e author. 
245 1 0 |a Three classes of nonlinear stochastic partial differential equations /  |c Jie Xiong. 
264 1 |a [Hackensack] New Jersey :  |b World Scientific,  |c [2013] 
264 4 |c ©2013 
300 |a 1 online resource (xi, 164 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The study of measure-valued processes in random environments has seen some intensive research activities in recent years whereby interesting nonlinear stochastic partial differential equations (SPDEs) were derived. Due to the nonlinearity and the non-Lipschitz continuity of their coefficients, new techniques and concepts have recently been developed for the study of such SPDEs. These include the conditional Laplace transform technique, the conditional mild solution, and the bridge between SPDEs and some kind of backward stochastic differential equations. This volume provides an introduction to these topics with the aim of attracting more researchers into this exciting and young area of research. It can be considered as the first book of its kind. The tools introduced and developed for the study of measure-valued processes in random environments can be used in a much broader area of nonlinear SPDEs. 
504 |a Includes bibliographical references (pages 157-162) and index. 
505 0 |a 1. Introduction to superprocesses. 1.1. Branching particle system. 1.2. The log-Laplace equation. 1.3. The moment duality. 1.4. The SPDE for the density. 1.5. The SPDE for the distribution. 1.6. Historical remarks -- 2. Superprocesses in random environments. 2.1. Introduction and main result. 2.2. The moment duality. 2.3. Conditional martingale problem. 2.4. Historical remarks -- 3. Linear SPDE. 3.1. An equation on measure space. 3.2. A duality representation. 3.3. Two estimates. 3.4. Historical remarks -- 4. Particle representations for a class of nonlinear SPDEs. 4.1. Introduction. 4.2. Solution for the system. 4.3. A nonlinear SPDE. 4.4. Historical remarks -- 5. Stochastic log-Laplace equation. 5.1. Introduction. 5.2. Approximation and two estimates. 5.3. Existence and uniqueness. 5.4. Conditional log-Laplace transform. 5.5. Historical remarks -- 6. SPDEs for density fields of the superprocesses in random environment. 6.1. Introduction. 6.2. Derivation of SPDE. 6.3. A convolution representation. 6.4. An estimate in spatial increment. 6.5. Estimates in time increment. 6.6. Historical remarks -- 7. Backward doubly stochastic differential equations. 7.1. Introduction and basic definitions. 7.2. Itô-Pardoux-Peng formula. 7.3. Uniqueness of solution. 7.4. Historical remarks -- 8. From SPDE to BSDE. 8.1. The SPDE for the distribution. 8.2. Existence of solution to SPDE. 8.3. From BSDE to SPDE. 8.4. Uniqueness for SPDE. 8.5. Historical remarks. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Stochastic partial differential equations. 
650 0 |a Differential equations, Nonlinear. 
650 6 |a Équations aux dérivées partielles stochastiques. 
650 6 |a Équations différentielles non linéaires. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Differential equations, Nonlinear.  |2 fast  |0 (OCoLC)fst00893474 
650 7 |a Stochastic partial differential equations.  |2 fast  |0 (OCoLC)fst01133516 
776 0 8 |i Print version:  |a Xiong, Jie.  |t Three classes of nonlinear stochastic partial differential equations.  |d Singapore ; New Jersey : World Scientific, [2013]  |z 9814452351  |w (OCoLC)823897015 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=592616  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25272402 
938 |a Coutts Information Services  |b COUT  |n 25646325 
938 |a ebrary  |b EBRY  |n ebr10719550 
938 |a EBSCOhost  |b EBSC  |n 592616 
938 |a Cengage Learning  |b GVRL  |n GVRL8RAZ 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25646325 
938 |a YBP Library Services  |b YANK  |n 10752414 
994 |a 92  |b IZTAP