Cargando…

Local activity principle /

The principle of local activity explains the emergence of complex patterns in a homogeneous medium. At first defined in the theory of nonlinear electronic circuits in a mathematically rigorous way, it can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in phy...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mainzer, Klaus
Autor Corporativo: World Scientific (Firm)
Otros Autores: Chua, Leon O., 1936-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Singapore : Imperial College Press ; Distributed by World Scientific Pub. Co., ©2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn844311083
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cuu|||uu|||
008 091123s2013 enka ob 001 0 eng d
010 |a  2013427768 
040 |a WSPC  |b eng  |e pn  |c STF  |d HKP  |d OCLCO  |d CDX  |d N$T  |d E7B  |d DEBSZ  |d OCLCO  |d COO  |d UKMGB  |d GGVRL  |d YDXCP  |d OCLCQ  |d MERUC  |d OCLCF  |d OCLCQ  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OL$  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 016211114  |2 Uk 
019 |a 843870730  |a 847350606  |a 961638026  |a 962651267  |a 1055396622  |a 1065974604  |a 1081257931  |a 1086503672  |a 1228615891  |a 1237216921 
020 |a 9781908977106  |q (electronic bk.) 
020 |a 1908977108  |q (electronic bk.) 
020 |a 9781908977113  |q (electronic bk.) 
020 |a 1908977116  |q (electronic bk.) 
020 |z 9781908977090 
020 |z 1908977094  |q (hbk.) 
029 1 |a AU@  |b 000054194056 
029 1 |a DEBBG  |b BV043106397 
029 1 |a DEBBG  |b BV044175653 
029 1 |a DEBSZ  |b 383447542 
029 1 |a DEBSZ  |b 423656015 
029 1 |a DEBSZ  |b 45499866X 
029 1 |a NZ1  |b 15179752 
035 |a (OCoLC)844311083  |z (OCoLC)843870730  |z (OCoLC)847350606  |z (OCoLC)961638026  |z (OCoLC)962651267  |z (OCoLC)1055396622  |z (OCoLC)1065974604  |z (OCoLC)1081257931  |z (OCoLC)1086503672  |z (OCoLC)1228615891  |z (OCoLC)1237216921 
050 4 |a QA267.7  |b .M35 2013eb 
072 7 |a COM  |x 037000  |2 bisacsh 
082 0 4 |a 511.352  |2 22 
049 |a UAMI 
100 1 |a Mainzer, Klaus. 
245 1 0 |a Local activity principle /  |c Klaus Mainzer, Leon Chua. 
260 |a London :  |b Imperial College Press ;  |a Singapore :  |b Distributed by World Scientific Pub. Co.,  |c ©2013. 
300 |a 1 online resource (xii, 443 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 409-421) and indexes. 
505 0 |a 1. The local activity principle and the emergence of complexity. 1.1. Mathematical definition of local activity. 1.2. The local activity theorem. 1.3. Local activity is the origin of complexity -- 2. Local activity and edge of chaos in computer visualization. 2.1. Local activity and edge of chaos of the Brusselator equations. 2.2. Local activity and edge of chaos of the Gierer-Meinhardt equations. 2.3. Local activity and edge of chaos of the FitzHugh-Nagumo equations. 2.4. Local activity and edge of chaos of the Hodgkin-Huxley equations. 2.5. Local activity and edge of chaos of the Oregonator equations -- 3. The local activity principle and the expansion of the universe. 3.1. Mathematical definition of symmetry. 3.2. Symmetries in the quantum world. 3.3. Global and local symmetries. 3.4. Local gauge symmetries and symmetry breaking -- 4. The local activity principle and the dynamics of matter. 4.1. The local activity principle of pattern formation. 4.2. The local activity principle and Prigogine's dissipative structures. 4.3. The local activity principle and Haken's synergetics -- 5. The local activity principle and the evolution of life. 5.1. The local activity principle of Turing's morphogenesis. 5.2. The local activity principle in systems biology. 5.3. The local activity principle in brain research -- 6. The local activity principle and the co-evolution of technology. 6.1. The local activity principle of cellular automata. 6.2. The local activity principle of neural networks. 6.3. The local activity principle of memristors. 6.4. The local activity principle of global information networks -- 7. The local activity principle and innovation in the economy and society. 7.1. The local activity principle in sociodynamics. 7.2. The local activity principle and emerging risks. 7.3. The local activity principle in financial dynamics. 7.4. The local activity principle in innovation dynamics. 7.5. The local activity principle of sustainable entrepreneurship -- 8. The message of the local activity principle. 8.1. The local activity principle in culture and philosophy. 8.2. What can we learn from the local activity principle in the age of globalization? 
520 |a The principle of local activity explains the emergence of complex patterns in a homogeneous medium. At first defined in the theory of nonlinear electronic circuits in a mathematically rigorous way, it can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in physics, chemistry, biology, and brain research. Recently, it was realized by memristors for nanoelectronic device applications. In general, the emergence of complex patterns and structures is explained by symmetry breaking in homogeneous media, which is caused by local activity. This book argues that the principle of local activity is really fundamental in science, and can even be identified in quantum cosmology as symmetry breaking of local gauge symmetries generating the complexity of matter and forces in our universe. Applications are considered in economic, financial, and social systems with the emergence of equilibrium states, symmetry breaking at critical points of phase transitions and risky acting at the edge of chaos. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Computational complexity. 
650 0 |a Mathematical physics. 
650 0 |a Broken symmetry (Physics) 
650 6 |a Complexité de calcul (Informatique) 
650 6 |a Physique mathématique. 
650 6 |a Symétrie brisée (Physique) 
650 7 |a COMPUTERS  |x Machine Theory.  |2 bisacsh 
650 7 |a Broken symmetry (Physics)  |2 fast 
650 7 |a Computational complexity  |2 fast 
650 7 |a Mathematical physics  |2 fast 
700 1 |a Chua, Leon O.,  |d 1936- 
710 2 |a World Scientific (Firm) 
776 1 |z 9781908977090 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=575390  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25218080 
938 |a Coutts Information Services  |b COUT  |n 25409831 
938 |a ebrary  |b EBRY  |n ebr10700570 
938 |a EBSCOhost  |b EBSC  |n 575390 
938 |a Cengage Learning  |b GVRL  |n GVRL8RCY 
938 |a YBP Library Services  |b YANK  |n 10697905 
994 |a 92  |b IZTAP