Cargando…

Navier-Stokes equations in planar domains /

This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test pr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ben-Artzi, Matania, 1948-
Autor Corporativo: World Scientific (Firm)
Otros Autores: Croisille, Jean-Pierre, 1961-, Fishelov, Dalia
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Singapore : Imperial College Press ; Distributed by World Scientific Pub. Co., ©2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn844311053
003 OCoLC
005 20231017213018.0
006 m o d
007 cr buu|||uu|||
008 091123s2013 enka ob 001 0 eng d
040 |a WSPC  |b eng  |e pn  |c STF  |d YDXCP  |d IDEBK  |d N$T  |d GPM  |d E7B  |d OCLCF  |d GGVRL  |d OCLCQ  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d OCLCQ  |d U3W  |d STF  |d VTS  |d INT  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 961606202  |a 962581122  |a 988430559  |a 991954274 
020 |a 9781848162761  |q (electronic bk.) 
020 |a 1848162766  |q (electronic bk.) 
020 |z 9781848162754 
029 1 |a AU@  |b 000054194053 
029 1 |a DEBBG  |b BV043106396 
029 1 |a DEBSZ  |b 421250747 
029 1 |a NZ1  |b 15908538 
035 |a (OCoLC)844311053  |z (OCoLC)961606202  |z (OCoLC)962581122  |z (OCoLC)988430559  |z (OCoLC)991954274 
050 4 |a QA374  |b .B46 2013 
072 7 |a SCI  |x 085000  |2 bisacsh 
082 0 4 |a 532.05201515353  |2 22 
049 |a UAMI 
100 1 |a Ben-Artzi, Matania,  |d 1948- 
245 1 0 |a Navier-Stokes equations in planar domains /  |c Matania Ben-Artzi, Jean-Pierre Croisille, Dalia Fishelov. 
260 |a London :  |b Imperial College Press ;  |a Singapore :  |b Distributed by World Scientific Pub. Co.,  |c ©2013. 
300 |a 1 online resource (xii, 302 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 287-297) and index. 
505 0 |a pt. I. Basic theory. 1. Introduction. 1.1. Functional notation -- 2. Existence and uniqueness of smooth solutions. 2.1. The linear convection-diffusion equation. 2.2. Proof of theorem 2.1. 2.3. Existence and uniqueness in Hölder spaces. 2.4. Notes for chapter 2 -- 3. Estimates for smooth solutions. 3.1. Estimates involving [symbol]. 3.2. Estimates involving [symbol]. 3.3. Estimating derivatives. 3.4. Notes for chapter 3 -- 4. Extension of the solution operator. 4.1. An intermediate extension. 4.2. Extension to initial vorticity in [symbol]. 4.3. Notes for chapter 4 -- 5. Measures as initial data. 5.1. Uniqueness for general initial measures. 5.2. Notes for chapter 5 -- 6. Asymptotic behavior for large time. 6.1. Decay estimates for large time. 6.2. Initial data with stronger spatial decay. 6.3. Stability of steady states. 6.4. Notes for chapter 6 -- A. Some theorems from functional analysis. A.1. The Calderón-Zygmund theorem. A.2. Young's and the Hardy-Littlewood-Sobolev inequalities. A.3. The Riesz-Thorin interpolation theorem. A.4. Finite Borel measures in [symbol] and the heat kernel -- pt. II. Approximate solutions. 7. Introduction -- 8. Notation. 8.1. One-dimensional discrete setting. 8.2. Two-dimensional discrete setting -- 9. Finite difference approximation to second-order boundary-value problems. 9.1. The principle of finite difference schemes. 9.2. The three-point Laplacian. 9.3. Matrix representation of the three-point Laplacian. 9.4. Notes for chapter 9 -- 10. From Hermitian derivative to the compact discrete biharmonic operator. 10.1. The Hermitian derivative operator. 10.2. A finite element approach to the Hermitian derivative. 10.3. The three-point biharmonic operator. 10.4. Accuracy of the three-point biharmonic operator. 10.5. Coercivity and stability properties of the three-point biharmonic operator. 10.6. Matrix representation of the three-point biharmonic operator. 10.7. Convergence analysis using the matrix representation. 10.8. Notes for chapter 10 -- 11. Polynomial approach to the discrete biharmonic operator. 11.1. The biharmonic problem in a rectangle. 11.2. The biharmonic problem in an irregular domain. 11.3. Notes for chapter 11 -- 12. Compact approximation of the Navier-Stokes equations in streamfunction formulation. 12.1. The Navier-Stokes equations in streamfunction formulation. 12.2. Discretizing the streamfunction equation. 12.3. Convergence of the scheme. 12.4. Notes for chapter 12 -- B. Eigenfunction approach for [symbol]. B.1. Some basic properties of the equation. B.2. The discrete approximation -- 13. Fully discrete approximation of the Navier-Stokes equations. 13.1. Fourth-order approximation in space. 13.2. A time-stepping discrete scheme. 13.3. Numerical results. 13.4. Notes for chapter 13 -- 14. Numerical simulations of the driven cavity problem. 14.1. Second-order scheme for the driven cavity problem. 14.2. Fourth-order scheme for the driven cavity problem. 14.3. Double-driven cavity problem. 14.4. Notes for chapter 14. 
520 |a This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as "driven cavity" and "double-driven cavity". A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a "pure streamfunction" approach. In particular, a complete proof of convergence is given for the full nonlinear problem. This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Navier-Stokes equations. 
650 6 |a Équations de Navier-Stokes. 
650 7 |a SCIENCE  |x Mechanics  |x Fluids.  |2 bisacsh 
650 7 |a Navier-Stokes equations  |2 fast 
700 1 |a Croisille, Jean-Pierre,  |d 1961- 
700 1 |a Fishelov, Dalia. 
710 2 |a World Scientific (Firm) 
776 0 8 |i Print version:  |b en-Artzi, Matania, 1948-  |t Navier-Stokes equations in planar domains.  |d London ; Hackensack, NJ : Imperial College Press, ©2013  |z 9781848162754  |w (DLC) 2013427793  |w (OCoLC)824183287 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=592580  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26869407 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25272106 
938 |a ebrary  |b EBRY  |n ebr10719524 
938 |a EBSCOhost  |b EBSC  |n 592580 
938 |a Cengage Learning  |b GVRL  |n GVRL8QYD 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25645536 
938 |a YBP Library Services  |b YANK  |n 10752353 
994 |a 92  |b IZTAP