Cargando…

First Steps in Random Walks : From Tools to Applications.

The name ""random walk"" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of ""Nature"". The same year, a similar problem was formulated by Albert Einstein in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Klafter, J.
Otros Autores: Sokolov, I. M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : OUP Oxford, 2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn843200350
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 130515s2011 enk ob 001 0 eng d
040 |a MERUC  |b eng  |e pn  |c MERUC  |d MHW  |d YDXCP  |d N$T  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d CUY  |d LOA  |d MERUC  |d ICG  |d K6U  |d ZCU  |d OCLCQ  |d VTS  |d U3W  |d OCLCQ  |d TKN  |d STF  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d OCLCO  |d SFB  |d EBLCP  |d OCLCQ  |d OCLCO 
019 |a 1030908688  |a 1033538836  |a 1264810029  |a 1297385241  |a 1297525466 
020 |a 9780191552953  |q (electronic bk.) 
020 |a 019155295X  |q (electronic bk.) 
020 |a 0199234868 
020 |a 9780199234868 
020 |z 019155295X 
029 1 |a DEBBG  |b BV043123078 
029 1 |a DEBSZ  |b 381830551 
029 1 |a DEBSZ  |b 42458235X 
029 1 |a DEBSZ  |b 445994339 
035 |a (OCoLC)843200350  |z (OCoLC)1030908688  |z (OCoLC)1033538836  |z (OCoLC)1264810029  |z (OCoLC)1297385241  |z (OCoLC)1297525466 
050 4 |a QA274.73 .K53 2011 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2/82  |a 519.282 
084 |a SCI055000  |a MAT003000  |a MAT008000  |2 bisacsh 
049 |a UAMI 
100 1 |a Klafter, J. 
245 1 0 |a First Steps in Random Walks :  |b From Tools to Applications. 
260 |a Oxford :  |b OUP Oxford,  |c 2011. 
300 |a 1 online resource (161 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
520 |a The name ""random walk"" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of ""Nature"". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics andchemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcel. 
505 0 |a 1. Characteristic functions -- 2. Generating functions and applications -- 3. Continuous-time random walks -- 4. CTRW and aging phenomena -- 5. Master equations -- 6. Fractional diffusion and Fokker-Planck equations for subdiffusion -- 7. Lévy flights -- 8. Coupled CTRW and Lévy walks -- 9. Simple reactions : A+B->B -- 10. Random walks on percolation structures. 
504 |a Includes bibliographical references and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Random walks (Mathematics) 
650 6 |a Marches aléatoires (Mathématiques) 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Random walks (Mathematics)  |2 fast 
700 1 |a Sokolov, I. M. 
776 0 8 |i Print version:  |a Klafter, J.  |t First Steps in Random Walks : From Tools to Applications.  |d Oxford : OUP Oxford, ©2011  |z 9780199234868 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=579781  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7038518 
938 |a EBSCOhost  |b EBSC  |n 579781 
938 |a YBP Library Services  |b YANK  |n 11260548 
938 |a YBP Library Services  |b YANK  |n 10680793 
994 |a 92  |b IZTAP