|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBSCO_ocn843200350 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
130515s2011 enk ob 001 0 eng d |
040 |
|
|
|a MERUC
|b eng
|e pn
|c MERUC
|d MHW
|d YDXCP
|d N$T
|d DEBSZ
|d OCLCQ
|d OCLCF
|d OCLCQ
|d AGLDB
|d CUY
|d LOA
|d MERUC
|d ICG
|d K6U
|d ZCU
|d OCLCQ
|d VTS
|d U3W
|d OCLCQ
|d TKN
|d STF
|d DKC
|d AU@
|d OCLCQ
|d M8D
|d OCLCO
|d SFB
|d EBLCP
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1030908688
|a 1033538836
|a 1264810029
|a 1297385241
|a 1297525466
|
020 |
|
|
|a 9780191552953
|q (electronic bk.)
|
020 |
|
|
|a 019155295X
|q (electronic bk.)
|
020 |
|
|
|a 0199234868
|
020 |
|
|
|a 9780199234868
|
020 |
|
|
|z 019155295X
|
029 |
1 |
|
|a DEBBG
|b BV043123078
|
029 |
1 |
|
|a DEBSZ
|b 381830551
|
029 |
1 |
|
|a DEBSZ
|b 42458235X
|
029 |
1 |
|
|a DEBSZ
|b 445994339
|
035 |
|
|
|a (OCoLC)843200350
|z (OCoLC)1030908688
|z (OCoLC)1033538836
|z (OCoLC)1264810029
|z (OCoLC)1297385241
|z (OCoLC)1297525466
|
050 |
|
4 |
|a QA274.73 .K53 2011
|
072 |
|
7 |
|a MAT
|x 003000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
082 |
0 |
4 |
|a 519.2/82
|a 519.282
|
084 |
|
|
|a SCI055000
|a MAT003000
|a MAT008000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Klafter, J.
|
245 |
1 |
0 |
|a First Steps in Random Walks :
|b From Tools to Applications.
|
260 |
|
|
|a Oxford :
|b OUP Oxford,
|c 2011.
|
300 |
|
|
|a 1 online resource (161 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|2 rda
|
520 |
|
|
|a The name ""random walk"" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of ""Nature"". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics andchemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcel.
|
505 |
0 |
|
|a 1. Characteristic functions -- 2. Generating functions and applications -- 3. Continuous-time random walks -- 4. CTRW and aging phenomena -- 5. Master equations -- 6. Fractional diffusion and Fokker-Planck equations for subdiffusion -- 7. Lévy flights -- 8. Coupled CTRW and Lévy walks -- 9. Simple reactions : A+B->B -- 10. Random walks on percolation structures.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Random walks (Mathematics)
|
650 |
|
6 |
|a Marches aléatoires (Mathématiques)
|
650 |
|
7 |
|a MATHEMATICS
|x Applied.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Random walks (Mathematics)
|2 fast
|
700 |
1 |
|
|a Sokolov, I. M.
|
776 |
0 |
8 |
|i Print version:
|a Klafter, J.
|t First Steps in Random Walks : From Tools to Applications.
|d Oxford : OUP Oxford, ©2011
|z 9780199234868
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=579781
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7038518
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 579781
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11260548
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10680793
|
994 |
|
|
|a 92
|b IZTAP
|