Cargando…

Geometric and topological methods for quantum field theory : proceedings of the 2009 Villa de Leyva summer school /

"Based on lectures given at the renowed Villa de Leyva summer school, this book provides a unique presentation of modern geometric methods in quantum field theory. Written by experts, it enables readers to enter some of the most fascinating research topics in this subject. Covering a series of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Cardona, Alexander (Editor ), Contreras, Iván, 1985- (Editor ), Reyes-Lega, Andrés F., 1973- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn842919719
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130514s2013 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d CAMBR  |d OCLCA  |d E7B  |d IDEBK  |d OCLCA  |d CDX  |d COO  |d EBLCP  |d UMI  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCQ  |d BUF  |d UAB  |d OCLCQ  |d CEF  |d DEHBZ  |d OCLCQ  |d WYU  |d OL$  |d OCLCQ  |d A6Q  |d LOA  |d K6U  |d VT2  |d OCLCQ  |d VLY  |d LUN  |d AJS  |d OCLCQ  |d OCLCO  |d UKAHL  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 856933019  |a 1066455280  |a 1107764887  |a 1109943295  |a 1111277541  |a 1117847536  |a 1167180688  |a 1228596021  |a 1259189020 
020 |a 9781107341821  |q (electronic bk.) 
020 |a 1107341825  |q (electronic bk.) 
020 |a 9781139208642  |q (electronic bk.) 
020 |a 1139208640  |q (electronic bk.) 
020 |a 9781299634862  |q (MyiLibrary) 
020 |a 1299634869  |q (MyiLibrary) 
020 |a 9781107345577 
020 |a 110734557X 
020 |a 9781107348073  |q (e-book) 
020 |a 1107348072 
020 |z 9781107026834 
020 |z 1107026830 
020 |a 1107236681 
020 |a 9781107236684 
020 |a 1107344328 
020 |a 9781107344327 
020 |a 1107349125 
020 |a 9781107349124 
020 |a 1107357691 
020 |a 9781107357693 
029 1 |a AU@  |b 000052007799 
029 1 |a DEBBG  |b BV041431645 
029 1 |a DEBSZ  |b 382134702 
029 1 |a DEBSZ  |b 398275041 
029 1 |a NLGGC  |b 35744597X 
035 |a (OCoLC)842919719  |z (OCoLC)856933019  |z (OCoLC)1066455280  |z (OCoLC)1107764887  |z (OCoLC)1109943295  |z (OCoLC)1111277541  |z (OCoLC)1117847536  |z (OCoLC)1167180688  |z (OCoLC)1228596021  |z (OCoLC)1259189020 
037 |a CL0500000265  |b Safari Books Online 
050 4 |a QC174.17.G46  |b G46 2013eb 
072 7 |a SCI  |x 067000  |2 bisacsh 
082 0 4 |a 530.14/301516  |2 23 
084 |a SCI040000  |2 bisacsh 
049 |a UAMI 
245 0 0 |a Geometric and topological methods for quantum field theory :  |b proceedings of the 2009 Villa de Leyva summer school /  |c edited by Alexander Cardona, Iván Contreras, Andrés F. Reyes-Lega. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
520 |a "Based on lectures given at the renowed Villa de Leyva summer school, this book provides a unique presentation of modern geometric methods in quantum field theory. Written by experts, it enables readers to enter some of the most fascinating research topics in this subject. Covering a series of topics on geometry, topology, algebra, number theory methods and their applications to quantum field theory, the book covers topics such as Dirac structures, holomorphic bundles and stability, Feynman integrals, geometric aspects of quantum field theory and the standard model, spectral and Riemannian geometry and index theory. This is a valuable guide for graduate students and researchers in physics and mathematics wanting to enter this interesting research field at the borderline between mathematics and physics"--  |c Provided by publisher 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Contributors; Introduction; 1 A brief introduction to Dirac manifolds; 1.1 Introduction; 1.1.1 Notation, conventions, terminology; 1.2 Presymplectic and Poisson structures; 1.2.1 Two viewpoints on symplectic geometry; 1.2.2 Going degenerate; 1.3 Dirac structures; 1.4 Properties of Dirac structures; 1.4.1 Lie algebroid; 1.4.2 Presymplectic leaves and null distribution; 1.4.3 Hamiltonian vector fields and Poisson algebra; 1.5 Morphisms of Dirac manifolds; 1.5.1 Pulling back and pushing forward; 1.5.2 Clean intersection and smoothness issues 
505 8 |a 1.6 Submanifolds of Poisson manifolds and constraints1.6.1 The induced Poisson bracket on admissible functions; 1.6.2 A word on coisotropic submanifolds (or first-class constraints); 1.6.3 Poisson-Dirac submanifolds and the Dirac bracket; 1.6.4 Momentum level sets; 1.7 Brief remarks on further developments; Acknowledgments; References; 2 Differential geometry of holomorphic vector bundles on a curve; 2.1 Holomorphic vector bundles on Riemann surfaces; 2.1.1 Vector bundles; 2.1.2 Topological classification; 2.1.3 Dolbeault operators and the space of holomorphic structures; 2.1.4 Exercises 
505 8 |a 2.2 Holomorphic structures and unitary connections2.2.1 Hermitian metrics and unitary connections; 2.2.2 The Atiyah-Bott symplectic form; 2.2.3 Exercises; 2.3 Moduli spaces of semi-stable vector bundles; 2.3.1 Stable and semi-stable vector bundles; 2.3.2 Donaldson's theorem; 2.3.3 Exercises; References; 3 Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles; Introduction; Part 1: Some useful infinite dimensional Lie groups; 3.1 The gauge group of a bundle; 3.2 The diffeomorphism group of a bundle 
505 8 |a 3.3 The algebra of zero-order classical pseudodifferential operators3.4 The group of invertible zero-order dos; Part 2: Traces and central extensions; 3.5 Traces on zero-order classical dos; 3.6 Logarithms and central extensions; 3.7 Linear extensions of the L2-trace; Part 3: Singular Chern-Weil classes; 3.8 Chern-Weil calculus in finite dimensions; 3.9 A class of infinite dimensional vector bundles; 3.10 Frame bundles and associated do-algebra bundles; 3.11 Logarithms and closed forms; 3.12 Chern-Weil forms in infinite dimensions; 3.13 Weighted Chern -- Weil forms; discrepancies 
505 8 |a 3.13.1 The Hochschild coboundary of a weighted trace3.13.2 Dependence on the weight; Part 4: Circumventing anomalies; 3.13.3 Exterior differential of a weighted trace; 3.13.4 Weighted traces extended to admissible fibre bundles; 3.13.5 Obstructions to closedness of weighted Chern -- Weil forms; 3.14 Renormalised Chern-Weil forms on do Grassmannians; 3.15 Regular Chern-Weil forms in infinite dimensions; Acknowledgements; References; 4 Introduction to Feynman integrals; 4.1 Introduction; 4.2 Basics of perturbative quantum field theory; 4.3 Dimensional regularisation 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Geometric quantization. 
650 0 |a Quantum field theory  |x Mathematics. 
650 6 |a Quantification géométrique. 
650 6 |a Théorie quantique des champs  |x Mathématiques. 
650 7 |a SCIENCE  |x Mathematical Physics.  |2 bisacsh 
650 7 |a SCIENCE  |x Waves & Wave Mechanics.  |2 bisacsh 
650 7 |a Geometric quantization  |2 fast 
650 7 |a Quantum field theory  |x Mathematics  |2 fast 
700 1 |a Cardona, Alexander,  |e editor. 
700 1 |a Contreras, Iván,  |d 1985-  |e editor. 
700 1 |a Reyes-Lega, Andrés F.,  |d 1973-  |e editor. 
776 0 8 |i Print version:  |t Geometric and topological methods for quantum field theory.  |d Cambridge : Cambridge University Press, 2013  |z 9781107026834  |w (DLC) 2012048560  |w (OCoLC)813939185 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=545076  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34206180 
938 |a Coutts Information Services  |b COUT  |n 25590726 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1139705 
938 |a ebrary  |b EBRY  |n ebr10695366 
938 |a EBSCOhost  |b EBSC  |n 545076 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25590726 
938 |a YBP Library Services  |b YANK  |n 10689587 
938 |a YBP Library Services  |b YANK  |n 10698301 
938 |a YBP Library Services  |b YANK  |n 10703605 
938 |a YBP Library Services  |b YANK  |n 10705903 
994 |a 92  |b IZTAP