|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn842919719 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130514s2013 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d YDXCP
|d CAMBR
|d OCLCA
|d E7B
|d IDEBK
|d OCLCA
|d CDX
|d COO
|d EBLCP
|d UMI
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCF
|d OCLCQ
|d BUF
|d UAB
|d OCLCQ
|d CEF
|d DEHBZ
|d OCLCQ
|d WYU
|d OL$
|d OCLCQ
|d A6Q
|d LOA
|d K6U
|d VT2
|d OCLCQ
|d VLY
|d LUN
|d AJS
|d OCLCQ
|d OCLCO
|d UKAHL
|d OCLCQ
|d QGK
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 856933019
|a 1066455280
|a 1107764887
|a 1109943295
|a 1111277541
|a 1117847536
|a 1167180688
|a 1228596021
|a 1259189020
|
020 |
|
|
|a 9781107341821
|q (electronic bk.)
|
020 |
|
|
|a 1107341825
|q (electronic bk.)
|
020 |
|
|
|a 9781139208642
|q (electronic bk.)
|
020 |
|
|
|a 1139208640
|q (electronic bk.)
|
020 |
|
|
|a 9781299634862
|q (MyiLibrary)
|
020 |
|
|
|a 1299634869
|q (MyiLibrary)
|
020 |
|
|
|a 9781107345577
|
020 |
|
|
|a 110734557X
|
020 |
|
|
|a 9781107348073
|q (e-book)
|
020 |
|
|
|a 1107348072
|
020 |
|
|
|z 9781107026834
|
020 |
|
|
|z 1107026830
|
020 |
|
|
|a 1107236681
|
020 |
|
|
|a 9781107236684
|
020 |
|
|
|a 1107344328
|
020 |
|
|
|a 9781107344327
|
020 |
|
|
|a 1107349125
|
020 |
|
|
|a 9781107349124
|
020 |
|
|
|a 1107357691
|
020 |
|
|
|a 9781107357693
|
029 |
1 |
|
|a AU@
|b 000052007799
|
029 |
1 |
|
|a DEBBG
|b BV041431645
|
029 |
1 |
|
|a DEBSZ
|b 382134702
|
029 |
1 |
|
|a DEBSZ
|b 398275041
|
029 |
1 |
|
|a NLGGC
|b 35744597X
|
035 |
|
|
|a (OCoLC)842919719
|z (OCoLC)856933019
|z (OCoLC)1066455280
|z (OCoLC)1107764887
|z (OCoLC)1109943295
|z (OCoLC)1111277541
|z (OCoLC)1117847536
|z (OCoLC)1167180688
|z (OCoLC)1228596021
|z (OCoLC)1259189020
|
037 |
|
|
|a CL0500000265
|b Safari Books Online
|
050 |
|
4 |
|a QC174.17.G46
|b G46 2013eb
|
072 |
|
7 |
|a SCI
|x 067000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.14/301516
|2 23
|
084 |
|
|
|a SCI040000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Geometric and topological methods for quantum field theory :
|b proceedings of the 2009 Villa de Leyva summer school /
|c edited by Alexander Cardona, Iván Contreras, Andrés F. Reyes-Lega.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2013.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
520 |
|
|
|a "Based on lectures given at the renowed Villa de Leyva summer school, this book provides a unique presentation of modern geometric methods in quantum field theory. Written by experts, it enables readers to enter some of the most fascinating research topics in this subject. Covering a series of topics on geometry, topology, algebra, number theory methods and their applications to quantum field theory, the book covers topics such as Dirac structures, holomorphic bundles and stability, Feynman integrals, geometric aspects of quantum field theory and the standard model, spectral and Riemannian geometry and index theory. This is a valuable guide for graduate students and researchers in physics and mathematics wanting to enter this interesting research field at the borderline between mathematics and physics"--
|c Provided by publisher
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Contributors; Introduction; 1 A brief introduction to Dirac manifolds; 1.1 Introduction; 1.1.1 Notation, conventions, terminology; 1.2 Presymplectic and Poisson structures; 1.2.1 Two viewpoints on symplectic geometry; 1.2.2 Going degenerate; 1.3 Dirac structures; 1.4 Properties of Dirac structures; 1.4.1 Lie algebroid; 1.4.2 Presymplectic leaves and null distribution; 1.4.3 Hamiltonian vector fields and Poisson algebra; 1.5 Morphisms of Dirac manifolds; 1.5.1 Pulling back and pushing forward; 1.5.2 Clean intersection and smoothness issues
|
505 |
8 |
|
|a 1.6 Submanifolds of Poisson manifolds and constraints1.6.1 The induced Poisson bracket on admissible functions; 1.6.2 A word on coisotropic submanifolds (or first-class constraints); 1.6.3 Poisson-Dirac submanifolds and the Dirac bracket; 1.6.4 Momentum level sets; 1.7 Brief remarks on further developments; Acknowledgments; References; 2 Differential geometry of holomorphic vector bundles on a curve; 2.1 Holomorphic vector bundles on Riemann surfaces; 2.1.1 Vector bundles; 2.1.2 Topological classification; 2.1.3 Dolbeault operators and the space of holomorphic structures; 2.1.4 Exercises
|
505 |
8 |
|
|a 2.2 Holomorphic structures and unitary connections2.2.1 Hermitian metrics and unitary connections; 2.2.2 The Atiyah-Bott symplectic form; 2.2.3 Exercises; 2.3 Moduli spaces of semi-stable vector bundles; 2.3.1 Stable and semi-stable vector bundles; 2.3.2 Donaldson's theorem; 2.3.3 Exercises; References; 3 Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles; Introduction; Part 1: Some useful infinite dimensional Lie groups; 3.1 The gauge group of a bundle; 3.2 The diffeomorphism group of a bundle
|
505 |
8 |
|
|a 3.3 The algebra of zero-order classical pseudodifferential operators3.4 The group of invertible zero-order dos; Part 2: Traces and central extensions; 3.5 Traces on zero-order classical dos; 3.6 Logarithms and central extensions; 3.7 Linear extensions of the L2-trace; Part 3: Singular Chern-Weil classes; 3.8 Chern-Weil calculus in finite dimensions; 3.9 A class of infinite dimensional vector bundles; 3.10 Frame bundles and associated do-algebra bundles; 3.11 Logarithms and closed forms; 3.12 Chern-Weil forms in infinite dimensions; 3.13 Weighted Chern -- Weil forms; discrepancies
|
505 |
8 |
|
|a 3.13.1 The Hochschild coboundary of a weighted trace3.13.2 Dependence on the weight; Part 4: Circumventing anomalies; 3.13.3 Exterior differential of a weighted trace; 3.13.4 Weighted traces extended to admissible fibre bundles; 3.13.5 Obstructions to closedness of weighted Chern -- Weil forms; 3.14 Renormalised Chern-Weil forms on do Grassmannians; 3.15 Regular Chern-Weil forms in infinite dimensions; Acknowledgements; References; 4 Introduction to Feynman integrals; 4.1 Introduction; 4.2 Basics of perturbative quantum field theory; 4.3 Dimensional regularisation
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Geometric quantization.
|
650 |
|
0 |
|a Quantum field theory
|x Mathematics.
|
650 |
|
6 |
|a Quantification géométrique.
|
650 |
|
6 |
|a Théorie quantique des champs
|x Mathématiques.
|
650 |
|
7 |
|a SCIENCE
|x Mathematical Physics.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Waves & Wave Mechanics.
|2 bisacsh
|
650 |
|
7 |
|a Geometric quantization
|2 fast
|
650 |
|
7 |
|a Quantum field theory
|x Mathematics
|2 fast
|
700 |
1 |
|
|a Cardona, Alexander,
|e editor.
|
700 |
1 |
|
|a Contreras, Iván,
|d 1985-
|e editor.
|
700 |
1 |
|
|a Reyes-Lega, Andrés F.,
|d 1973-
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Geometric and topological methods for quantum field theory.
|d Cambridge : Cambridge University Press, 2013
|z 9781107026834
|w (DLC) 2012048560
|w (OCoLC)813939185
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=545076
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH34206180
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 25590726
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1139705
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10695366
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 545076
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25590726
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10689587
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10698301
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10703605
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10705903
|
994 |
|
|
|a 92
|b IZTAP
|