Cargando…

Gravitation and spacetime /

The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached f...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ohanian, Hans C.
Otros Autores: Ruffini, Remo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Cambridge University Press, 2013.
Edición:3rd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface; Constants; Fundamental constants; Conversion constants; Astronomical constants; Notation; 1 Newton's gravitational theory; 1.1 The law of universal gravitation; 1.2 Tests of the inverse-square law; 1.3 Gravitational potential; 1.4 Gravitational multipoles; quadrupole moment of the Sun; 1.5 Inertial and gravitational mass; 1.6 Tests of equality of gravitational and inertial mass; 1.7 Tidal forces; 1.8 Tidal field as a local measure of gravitation; Problems; 2 The formalism of special relativity; 2.1 The spacetime of special relativity; 2.2 Tensors in spacetime
  • 2.3 Tensor fields2.4 Energy-momentum tensor; 2.5 Relativistic electrodynamics; 2.6 Differential forms and exterior calculus; Problems; 3 The linear approximation; 3.1 The example of electromagnetism; 3.2 Linear field equations for gravitation; 3.3 Variational principle and equation of motion; 3.4 Nonrelativistic limit and Newton's theory; 3.5 Geometric interpretation; curved spacetime; Problems; 4 Applications of the linear approximation; 4.1 Field of a spherical mass; 4.2 Gravitational time dilation; 4.3 Deflection of light; 4.4 Time delay of light; 4.5 Gravitational lenses
  • 4.6 Optics of gravitational lenses4.7 Field of a rotating mass; Lense-Thirring effect; Problems; 5 Gravitational waves; 5.1 Plane waves; 5.2 Interaction of particles with a gravitational wave; 5.3 Emission of gravitational radiation; 5.4 Emission by a vibrating quadrupole; 5.5 Emission by a rotating quadrupole; 5.6 Emission of bursts of gravitational radiation; 5.7 Detectors of gravitational radiation; Problems; 6 Riemannian geometry; 6.1 General coordinates and tensors; 6.2 Parallel transport; covariant derivative; 6.3 Geodesic equation; 6.4 Metric tensor; 6.5 Riemann curvature tensor
  • 6.6 Geodesic deviation and tidal forces Fermi-Walker transport; 6.7 Differential forms in curved spacetime; 6.8 Isometries of spacetime; Killing vectors; Problems; 7 Einstein's gravitational theory; 7.1 General covariance and invariance; gauge transformations; 7.2 Einstein's field equation; 7.3 Another approach to Einsteins equation; cosmological term; 7.4 Schwarzschild solution and Birkhoff theorem; 7.5 Motion of planets; perihelion precession; 7.6 Propagation of light; gravitational redshift; 7.7 Geodetic precession; Problems; 8 Black holes and gravitational collapse
  • 8.1 Singularities and pseudosingularities8.2 The black hole and its horizon; 8.3 Maximal Schwarzschild geometry; 8.4 Kerr solution and Reissner-Nordstrøm solution; 8.5 Horizons and singularities of the rotating black hole; 8.6 Maximal Kerr geometry; 8.7 Black-hole thermodynamics; Hawking process; 8.8 Gravitational collapse and formation of black holes; 8.9 In search of black holes; Problems; 9 Cosmology; 9.1 Large-scale structure of the universe; 9.2 Cosmic distances; 9.3 Expansion of the universe; Hubble's law; 9.4 Age of the universe; 9.5 Cosmic background radiation; 9.6 Mass density