Cargando…

Algebraic cycles and motives. Vol. 2 /

Algebraic geometry is a central subfield of mathematics in which the study of cycles is an important theme. Alexander Grothendieck taught that algebraic cycles should be considered from a motivic point of view and in recent years this topic has spurred a lot of activity. This book is one of two volu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: London Mathematical Society
Otros Autores: Nagel, Jan, Peters, C. (Chris)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2007.
Colección:London Mathematical Society lecture note series ; 344.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn841488449
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130502s2007 enka ob 100 0 eng d
040 |a CAMBR  |b eng  |e pn  |c CAMBR  |d N$T  |d OCLCF  |d OCL  |d OCLCQ  |d YDX  |d UAB  |d OCLCQ  |d AU@  |d OCLCQ  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781107089327  |q (electronic bk.) 
020 |a 1107089328  |q (electronic bk.) 
020 |a 9781107325968  |q (electronic bk.) 
020 |a 110732596X  |q (electronic bk.) 
020 |z 9780521701747 
020 |z 0521701740 
020 |z 0521701759 
020 |z 9780521701754 
035 |a (OCoLC)841488449 
050 4 |a QA564  |b .A187 2007eb 
072 7 |a MAT  |x 012010  |2 bisacsh 
082 0 4 |a 516.35  |2 22 
049 |a UAMI 
245 0 0 |a Algebraic cycles and motives.  |n Vol. 2 /  |c edited by Jan Nagel, Chris Peters. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2007. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 344 
500 |a "These proceedings contain a selection of papers from the EAGER conference 'Algebraic Cycles and Motives' that was held at the Lorentz Center in Leiden on the occasion of the 75th birthday of Professor J.P. Murre (Aug 30-Sept 3, 2004)"--Preface. 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 0 |g Research articles:  |t Beilinson's Hodge conjecture with coefficients /  |r M. Asakura and /  |r S. Saito ;  |t On the splitting of the Bloch-Beilinson filtration /  |r A. Beauville ;  |t K̈unneth projectors /  |r S. Bloch and  |r H. Esnault ;  |t The Brill-Noether curve of a stable bundle on a genus two curve /  |r S. Brivio and  |r A. Verra ;  |t On Tannaka duality for vector bundles on p-adic curves /  |r C. Deninger and  |r A. Werner ;  |t On finite-dimensional motives and Murre's conjecture /  |r U. Jannsen ;  |t On the transcendental part of the motive of a surface /  |r B. Kahn,  |r J.P. Murre and  |r C. Pedrini ;  |t A note on finite dimensional motives /  |r S.I. Kimura ;  |t Real regulators on Milnor complexes, II /  |r J.D. Lewis ;  |t Motives for Picard modular surfaces /  |r A. Miller [and others] ;  |t The regulator map for complete intersections /  |r J. Nagel ;  |t Hodge number polynomials for nearby and vanishing cohomology /  |r C. Peters and  |r J. Steenbrink ;  |t Direct image of logarithmic complexes /  |r M. Saito ;  |t Mordell-Weil lattices of certain elliptic K3 /  |r T. Shioda ;  |t Motives from diffraction /  |r J. Stienstra. 
520 |a Algebraic geometry is a central subfield of mathematics in which the study of cycles is an important theme. Alexander Grothendieck taught that algebraic cycles should be considered from a motivic point of view and in recent years this topic has spurred a lot of activity. This book is one of two volumes that provide a self-contained account of the subject as it stands. Together, the two books contain twenty-two contributions from leading figures in the field which survey the key research strands and present interesting new results. Topics discussed include: the study of algebraic cycles using Abel-Jacobi/regulator maps and normal functions; motives (Voevodsky's triangulated category of mixed motives, finite-dimensional motives); the conjectures of Bloch-Beilinson and Murre on filtrations on Chow groups and Bloch's conjecture. Researchers and students in complex algebraic geometry and arithmetic geometry will find much of interest here. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Algebraic cycles  |v Congresses. 
650 0 |a Motives (Mathematics)  |v Congresses. 
650 6 |a Cycles algébriques  |v Congrès. 
650 6 |a Motifs (Mathématiques)  |v Congrès. 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a Algebraic cycles  |2 fast 
650 7 |a Motives (Mathematics)  |2 fast 
655 7 |a Conference papers and proceedings  |2 fast 
700 1 |a Nagel, Jan. 
700 1 |a Peters, C.  |q (Chris) 
710 2 |a London Mathematical Society. 
830 0 |a London Mathematical Society lecture note series ;  |v 344. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569372  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 569372 
938 |a YBP Library Services  |b YANK  |n 10440793 
938 |a YBP Library Services  |b YANK  |n 10734788 
994 |a 92  |b IZTAP