Modern electronic structure theory and applications in organic chemistry /
This volume focuses on the use of quantum theory to understand and explain experiments in organic chemistry. High level ab initio calculations, when properly performed, are useful in making quantitative distinctions between various possible interpretations of structures, reactions and spectra. Chemi...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore ; River Edge, N.J. :
World Scientific,
©1997.
|
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | This volume focuses on the use of quantum theory to understand and explain experiments in organic chemistry. High level ab initio calculations, when properly performed, are useful in making quantitative distinctions between various possible interpretations of structures, reactions and spectra. Chemical reasoning based on simpler quantum models is, however, essential to enumerating the likely possibilities. The simpler models also often suggest the type of wave function likely to be involved in ground and excited states at various points along reaction paths. This preliminary understanding is needed in order to select the appropriate higher level approach since most higher level models are designed to describe improvements to some reasonable zeroth order wave function. Consequently, most of the chapters in this volume begin with experimental facts and model functions and then progress to higher level theory only when quantitative results are required. In the first chapter, Zimmerman discusses a wide variety of thermal and photochemical reactions of organic molecules. Gronert discusses the use of ab initio calculations and experimental facts in deciphering the mechanism of [symbol]-elimination reactions in the gas phase. Bettinger et. al. focus on carbene structures and reactions with comparison of the triplet and singlet states. Next, Hrovat and Borden discuss more general molecules with competitive triplet and singlet contenders for the ground state structure. Cave explains the difficulties and considerations involved with many of the methods and illustrates the difficulties by comparing with the UV spectra of short polyenes. Jordan et. al. discuss long-range electron transfer using model compounds and model Hamiltonians. Finally, Hiberty discusses the breathing orbital valence bond model as a different approach to introducing the crucial [symbol] correlation that is known to be important in organic reactions. |
---|---|
Descripción Física: | 1 online resource (vii, 379 pages) : illustrations |
Bibliografía: | Includes bibliographical references and index. |
ISBN: | 9789812839756 9812839755 |