Cargando…

Deterministic and random evolution /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Lorenz, Jens, 1949- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Hauppauge], New York : Nova Science Publishers, Inc., [2013]
Colección:Mathematics research developments
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn840582168
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 130402s2013 nyua ob 001 0 eng
010 |a  2019714089 
040 |a DLC  |b eng  |e rda  |c DLC  |d N$T  |d E7B  |d OCLCF  |d EBLCP  |d AGLDB  |d VTS  |d AU@  |d STF  |d YDXCP  |d OCLCO  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781626180208  |q ebook 
020 |a 1626180202 
020 |z 9781626180147  |q hardcover 
020 |z 1626180148  |q (hardcover) 
029 1 |a AU@  |b 000062325438 
029 1 |a DEBSZ  |b 42995364X 
029 1 |a DEBBG  |b BV043034420 
029 1 |a CHNEW  |b 000617570 
035 |a (OCoLC)840582168 
042 |a pcc 
050 0 0 |a QA274.225 
072 7 |a MAT  |x 011000  |2 bisacsh 
082 0 0 |a 519.3  |2 23 
049 |a UAMI 
245 0 0 |a Deterministic and random evolution /  |c Jens Lorenz, editor. 
264 1 |a [Hauppauge], New York :  |b Nova Science Publishers, Inc.,  |c [2013] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Mathematics research developments 
504 |a Includes bibliographical references (pages 183-184) and index. 
588 |a Description based on print version record and CIP data provided by publisher. 
505 0 |a DETERMINISTIC AND RANDOM EVOLUTION; DETERMINISTIC AND RANDOM EVOLUTION; Library of Congress Cataloging-in-Publication Data; Contents; Preface; Chapter 1: Introduction; Chapter 2: Basic Concepts; 1. Initial Value Problems for ODEs; 2. Discrete-Time Dynamics; 3. Continuous vs. Discrete Time; 4. Random Evolution; 5. Discussion; Chapter 3: Deterministic Systems: Outline of Advanced Topics; 1. Planetary Motion: Example for Determinism; 2. Reversibility in Time; 3. Sensitive Dependence on Initial Conditions; 4. Averages; 5. Dependence on Parameters; 6. Variation on Different Time Scales. 
505 8 |a Chapter 4: Planetary Motion1. Outline; 2. The Two Body Problem: Reduction to One Body in a Central Field; 3. One Body in a Central Field; 4. The Equation for an Ellipse in Polar Coordinates; 5. The Kepler Orbit; 6. Kepler's Third Law; 7. Time Dependence; 8. Bessel Functions via a Generating Function: Integral Representation; 9. Discussion; Chapter 5: Is Time Reversible?; 1. Reversibility for the Two Body Problem; 2. Reversibility: General Definition; 3. Discussion; Chapter 6: The Bernoulli Shift and the Logistic Map; 1. The Bernoulli Shift: Definition. 
505 8 |a 2. The Bernoulli Shift: Dynamical Properties3. The Logistic Map and Its Relation to the Bernoulli Shift; 4. Average Behavior of the Logistic Map; Chapter 7: Evolution on Two Time-Scales; 1. Fast and Slow Time Scales; 2. Simple Example; 3. A Difficult Example; Chapter 8: Stability and Bifurcations; 1. Fixed Points; 2. Exponential Growth; 3. Logistic Growth; 4. The Delayed Logistic Map; 5. Parameter Dependent Evolution and Hysteresis; Chapter 9: Scripts; 1. Script for Logistic Growth; 2. Scripts for the Delayed Logistic Map; 3. Scripts for Parameter Dependent Evolution and Hysteresis. 
505 8 |a Chapter 10: Two Oscillators: Periodicity, Ergodicity, and Phase Locking1. The Circle and the Two-Torus; 2. Uncoupled Oscillators: Periodic Solutions; 3. Uncoupled Oscillators: Ergodicity; 4. Time Average Equals Space Average for a Circle Map; 5. Coupled Oscillators; Chapter 11: The Gambler's Ruin Problem; 1. Description of the Game; 2. Some Questions and Numerical Realization; 3. The Transition Matrix P; 4. Evolution of Probability Density; 5. Discussion; 6. Application; 7. Script: Evolving the Probability Density for Gambler's Ruin; Chapter 12: Gambler's Ruin: Probabilities and Expected Time. 
505 8 |a 1. Probability of Ruin2. Probability of Winning; 3. Expected Time; 4. The Matrix View: Limit of Probability Densities; Chapter 13: Stochastic Model of a Simple Growth Process; 1. Growth Models; 2. The Forward Kolmogorov Equations; 3. Solution of the Forward Kolmogorov Equations; 4. The Sum of the pj(t); 5. The Expected Value of Xt; 6. The Variance of Xt; 7. Statistics of Interevent Times; 8. Numerical Realization of Random Evolution; 9. Figures and Scripts; Chapter 14: Introduction to Kinetic Theory; 1. Boyle, Bernoulli, Maxwell, and Sadi Carnot. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Stochastic sequences. 
650 0 |a Evolution equations. 
650 6 |a Suites aléatoires. 
650 6 |a Équations d'évolution. 
650 7 |a MATHEMATICS  |x Game Theory.  |2 bisacsh 
650 7 |a Evolution equations  |2 fast 
650 7 |a Stochastic sequences  |2 fast 
700 1 |a Lorenz, Jens,  |d 1949-  |e editor. 
776 0 8 |i Print version:  |t Deterministic and random evolution  |d [Hauppauge], New York : Nova Science Publishers, Inc., [2013]  |z 9781626180147 (hardcover)  |w (DLC) 2013001526 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570687  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 10578330 
938 |a EBSCOhost  |b EBSC  |n 570687 
938 |a ebrary  |b EBRY  |n ebr10686636 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3022092 
994 |a 92  |b IZTAP