Cargando…

Topology with applications : topological spaces via near and far /

The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spac...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Naimpally, S. A. (Autor), Peters, James F. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, ©2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn840506973
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130423s2013 nju ob 001 0 eng d
010 |a  2013427373 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d CUS  |d DEBSZ  |d I9W  |d GGVRL  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d NRC  |d MERUC  |d ZCU  |d U3W  |d UUM  |d OCLCQ  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d STF  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCO  |d OCLCQ  |d TUHNV  |d INARC 
015 |a GBB308984  |2 bnb 
016 7 |a 016262183  |2 Uk 
019 |a 1055408098  |a 1081213812  |a 1228527023  |a 1243569682  |a 1360073802 
020 |a 9789814407663  |q (electronic bk.) 
020 |a 9814407666  |q (electronic bk.) 
020 |z 9789814407656 
020 |z 9814407658 
029 1 |a AU@  |b 000054193631 
029 1 |a DEBBG  |b BV043062154 
029 1 |a DEBBG  |b BV044174619 
029 1 |a DEBSZ  |b 381319229 
029 1 |a DEBSZ  |b 421263903 
029 1 |a DEBSZ  |b 454998465 
029 1 |a AU@  |b 000073139333 
035 |a (OCoLC)840506973  |z (OCoLC)1055408098  |z (OCoLC)1081213812  |z (OCoLC)1228527023  |z (OCoLC)1243569682  |z (OCoLC)1360073802 
050 4 |a QA611 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
049 |a UAMI 
100 1 |a Naimpally, S. A.,  |e author. 
245 1 0 |a Topology with applications :  |b topological spaces via near and far /  |c Somashekhar A. Naimpally, James F. Peters. 
260 |a New Jersey :  |b World Scientific,  |c ©2013. 
300 |a 1 online resource (xv, 277 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
380 |a Bibliography 
588 0 |a Print version record. 
504 |a Includes bibliographical references and indexes. 
505 0 |a 1. Basic framework. 1.1. Preliminaries. 1.2. Metric space. 1.3. Gap functional and closure of a set. 1.4. Limit of a sequence. 1.5. Continuity. 1.6. Open and closed sets. 1.7. Metric and fine proximities. 1.8. Metric nearness. 1.9. Compactness. 1.10. Lindelöf spaces and characterisations of compactness. 1.11. Completeness and total boundedness. 1.12. Connectedness. 1.13. Chainable metric spaces. 1.14. UC spaces. 1.15. Function spaces. 1.16. Completion. 1.17. Hausdorff metric topology. 1.18. First countable, second countable and separable spaces. 1.19. Dense subspaces and Taimanov's theorem. 1.20. Application: proximal neighbourhoods in cell biology. 1.21. Problems -- 2. What is topology? 2.1. Topology. 2.2. Examples. 2.3. Closed and open sets. 2.4. Closure and interior. 2.5. Connectedness. 2.6. Subspace. 2.7. Bases and subbases. 2.8. More examples. 2.9. First countable, second countable and Lindelöf. 2.10. Application: topology of digital images. 2.11. Problems -- 3. Symmetric proximity. 3.1. Proximities. 3.2. Proximal neighbourhood. 3.3. Application: EF-proximity in visual merchandising. 3.4. Problems -- 4. Continuity and proximal continuity. 4.1. Continuous functions. 4.2. Continuous invariants. 4.3. Application: descriptive EF-proximity in NLO microscopy. 4.4. Problems -- 5. Separation axioms. 5.1 Discovery of the separation axioms. 5.2 Functional separation. 5.3 Observations about EF-proximity. 5.4 Application: distinct points in Hausdorff raster spaces. 5.5. Problems -- 6. Uniform spaces, filters and nets. 6.1. Uniformity via pseudometrics. 6.2. Filters and ultrafilters. 6.3. Ultrafilters. 6.4. Nets (Moore-Smith convergence). 6.5. Equivalence of nets and filters. 6.6. Application: proximal neighbourhoods in camouflage neighbourhood filters. 6.7. Problems -- 7. Compactness and higher separation axioms. 7.1. Compactness: net and filter views. 7.2. Compact subsets. 7.3. Compactness of a Hausdorff space. 7.4. Local compactness. 7.5. Generalisations of compactness. 7.6. Application: compact spaces in forgery detection. 7.7. Problems. 
505 8 |a 8. Initial and final structures, embedding. 8.1. Initial structures. 8.2. Embedding. 8.3. Final structures. 8.4. Application: quotient topology in image analysis. 8.5. Problems -- 9. Grills, clusters, bunches and proximal Wallman compactification. 9.1. Grills, clusters and bunches. 9.2. Grills. 9.3. Clans. 9.4. Bunches. 9.5. Clusters. 9.6. Proximal Wallman compactification. 9.7. Examples of compactifications. 9.8. Application: grills in pattern recognition. 9.9. Problems -- 10. Extensions of continuous functions: Taimanov theorem. 10.1. Proximal continuity. 10.2. Generalised Taimanov theorem. 10.3. Comparison of compactifications. 10.4. Application: topological psychology. 10.5. Problems -- 11. Metrisation. 11.1. Structures induced by a metric. 11.2. Uniform metrisation. 11.3. Proximal metrisation. 11.4. Topological metrisation. 11.5. Application: admissible covers in Micropalaeontology. 11.6. Problems -- 12. Function space topologies. 12.1. Topologies and convergences on a set of functions. 12.2. Pointwise convergence. 12.3. Compact open topology. 12.4. Proximal convergence. 12.5. Uniform convergence. 12.6. Pointwise convergence and preservation of continuity. 12.7. Uniform convergence on compacta. 12.8. Graph topologies. 12.9. Inverse uniform convergence for partial functions. 12.10. Application: hit and miss topologies in population dynamics. 12.11. Problems -- 13. Hyperspace topologies. 13.1. Overview of hyperspace topologies. 13.2. Vietoris topology. 13.3. Proximal topology. 13.4. Hausdorff metric (uniform) topology. 13.5. Application: local near sets in Hawking chronologies. 13.6. Problems -- 14. Selected topics: uniformity and metrisation. 14.1. Entourage uniformity. 14.2. Covering uniformity. 14.3. Topological metrisation theorems. 14.4. Tietze's extension theorem. 14.5. Application: local patterns. 14.6. Problems. 
520 |a The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F. Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Topology. 
650 6 |a Topologie. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Topology.  |2 fast  |0 (OCoLC)fst01152692 
700 1 |a Peters, James F.,  |e author. 
776 0 8 |i Print version:  |a Naimpally, S.A.  |t Topology with applications.  |d [Hackensack], New Jersey : World Scientific, [2013]  |z 9789814407656  |w (DLC) 2013427373  |w (OCoLC)820787122 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=564507  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25076643 
938 |a EBSCOhost  |b EBSC  |n 564507 
938 |a Cengage Learning  |b GVRL  |n GVRL8RJD 
938 |a YBP Library Services  |b YANK  |n 10411687 
938 |a Internet Archive  |b INAR  |n topologywithappl0000naim 
994 |a 92  |b IZTAP