Cargando…

Algebraic topology via differential geometry /

In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduce...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karoubi, Max
Otros Autores: Leruste, C.
Formato: Electrónico eBook
Idioma:Inglés
Francés
Publicado: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1987.
Colección:London Mathematical Society lecture note series ; 99.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title; Copyright; Contents; Introduction; I ALGEBRAIC PRELIMINARIES; 1 BILINEAR MAPS; 2 TENSOR PRODUCT OF TWO VECTOR SPACES; 2.1 Theorem: This construction can always be performed.; 2.2 Remarks:; 2. 3 Proposition; 2.4 Notation; 2.5 Theorem; 2.6 Corollary:; 2.7 Tensor product of Abelian groups; 3 COMMUTATIVITY. ASSOCIATIVITY; 3.1 Theorem:; 3.2 Theorem:; 3.3 Theorem:; 3.4 Remark:; 4 TENSOR PRODUCT OF LINEAR MAPS; 4.1 Theorem:; 4.2 Remark:; 4. 3 Proposi tion:; 5 TENSOR PRODUCT WITH A DIRECT SUM ('DISTRIBUTIVITY'); 5.1 Theorem; 5.2 Corollary; 5.3 Corollary; 6 EXACT SEQUENCES
  • 6.1 Definitions:6.2 Remark:; 6.3 Examples:; 6.4 Definition:; 6.5 Lemma:; 6.6 Corollary:; 6.7 Theorem:; 6.8 Important Remark:; 6.9 Theorem:; 6.10 Corollary.; 6.11 Remark:; 7 TENSOR ALGEBRA; 7.1 Definitions:; 7.2 Theorem:; 7.3 Remark:; 7.4 Theorem:; 7.5 Remark:; 7.6 Theorem:; 8 EXTERIOR POWERS. EXTERIOR ALGEBRA; 8.1 Definition:; 8.2 Proposition:; 8.3 Definitions:; 8.4 Remark:; 8.5 Theorem:; 8.6 Definition:; 8.7 Theorem:; 8.8 Remark:; 8.9 Theorem:; 8.10 Theorem:; 8.11 Theorem:; 8.12 Theorem:; 9 SYMMETRIC POWERS. SYMMETRIC ALGEBRA; 9.1 Definition:; 9.2 Definition:; 9.3 Theorem:; 9.4 Definition
  • 9.5 Theorem:9.6 Theorem:; 9.7 Theorem:; 10 DUALITY; 10.1 Theorem:; 10.2 Corollary:; 10.3 Theorem; 11 MODULES; II DIFFERENTIAL FORMS ON AN OPEN SUBSET OF Rn; 0 ELEMENTARY RESULTS OF DIFFERENTIAL CALCULUS; 0.1 First Order; 0.2 Second and Higher Orders; 1 DIFFERENTIAL FORMS; 1.1 -Definition:; 1.2 Definition:; 1.3 Remarks:; 1.4 Theorem:; 1.5 Remark:; 1.6 Notation:; 1.7 Example:; 2 EXTERIOR DIFFERENTIAL; 2.1 Theorem:; 2.2 Example:; 2 . 3 Theorem:; 2.4 Example:; 2.5 Theorem:; 3 INVERSE IMAGE OF A DIFFERENTIAL FORM; 3.1 Theorem:; 3.2 Explicit Formula; 4 DB i?HAM COHOMOLOGY; 4.1 Definition
  • 4.2 Remark:4.3 Remark:; 4.4 Theorem:; 5 HOMOTOPY; 5.1 Definition:; 5.2 Structure of (UxR; 5.3 Lemma:; 5.4 Definition:; 5.5 Lemma:; 5.6 Definition:; 5.7 Definition:; 5.8 Theorem:; 5.9 Corollary:; 6 COHOMOLOGY OF Rn; 6 .1 Lemma; 6.2 Lemma:; 6.3 Theorem:; 6.4 Remark:; 7 COHCMOLOGY OF R2\{0}; 7.1 Lemma:; 7.2 Theorem:; 7.3 Technical Lemma:; 7.4 Theorem:; 7.5 Corollary:; 7.6 Theorem:; 7.7 Corollary:; 7.8 Recapitulation:; 8 DIFFERENTIAL FORMS WITH COMPACT SUPPORTS; 8.1 Lemma:; 8.2 Definitions:; 8.3 Important Remark:; 8.4 Theorem:; 8.5 Theorem:; 8.6 Theorem:; 8.7 Remarks
  • III DIFFERENTIABLE MANIFOLDS1 TOPOLOGICAL MANIFOLDS; 1.1 Definition:; 1.2 Remarks; 1.3 Theorem:; 1.4 Theorem:; 1.5 Theorem:; 1.6 Definition:; 2 FIRST EXAMPLES; 2.1 Example:; 2.2 Example:; 2.3 Remark:; 2.4 Definitions:; 2.5 Lemma:; 2.6 Lenma:; 2.7 Theorem:; 2.8 Theorem:; 2.9 Theorem:; 2.10 Theorem:; 3 THE IMPLICIT FUNCTION THEOREM; 3.1 Theorem; 3.2 Corollary.; 3.3 Remark:; 4 EXAMPLES RESUMED; 4.1 Example:; 4.2 Definition:; 4.3 Theorem:; 4.4 Corollary:; 4.5 Remark:; 4.6 Theorem:; 4.7 Definition:; 4.8 Theorem:; 4.10 Theorem:; 4.11 Important Remark:; 4.12 Lemma:; 4.13 Corollary:; 4.14 Theorem