Algebraic topology via differential geometry /
In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduce...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Francés |
Publicado: |
Cambridge [Cambridgeshire] ; New York :
Cambridge University Press,
1987.
|
Colección: | London Mathematical Society lecture note series ;
99. |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | EBSCO_ocn840416224 | ||
003 | OCoLC | ||
005 | 20231017213018.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130422s1987 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCO |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d OCLCO |d UAB |d VTS |d REC |d OCLCO |d STF |d YDX |d M8D |d OCLCO |d UKAHL |d OCLCQ |d S2H |d K6U |d VLY |d INARC |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 797842539 |a 1115958647 |a 1145773432 |a 1162539426 |a 1241844552 |a 1242482161 | ||
020 | |a 9781107361317 |q (electronic bk.) | ||
020 | |a 1107361311 |q (electronic bk.) | ||
020 | |a 0511629370 | ||
020 | |a 9780511629372 | ||
020 | |a 1139884220 | ||
020 | |a 9781139884228 | ||
020 | |a 1107366224 | ||
020 | |a 9781107366220 | ||
020 | |a 1107370957 | ||
020 | |a 9781107370951 | ||
020 | |a 1107369967 | ||
020 | |a 9781107369962 | ||
020 | |a 1299404022 | ||
020 | |a 9781299404021 | ||
020 | |a 1107363764 | ||
020 | |a 9781107363762 | ||
020 | |z 0521317142 | ||
020 | |z 9780521317146 | ||
020 | |z 9780511629372 | ||
029 | 1 | |a DEBBG |b BV043142682 | |
029 | 1 | |a DEBSZ |b 421266139 | |
029 | 1 | |a GBVCP |b 804574138 | |
029 | 1 | |a DKDLA |b 820120-katalog:9910052708605765 | |
035 | |a (OCoLC)840416224 |z (OCoLC)797842539 |z (OCoLC)1115958647 |z (OCoLC)1145773432 |z (OCoLC)1162539426 |z (OCoLC)1241844552 |z (OCoLC)1242482161 | ||
041 | 1 | |a eng |h fre | |
050 | 4 | |a QA612 |b .K3613 1987eb | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 0 | 4 | |a 512/.55 |2 22 |
084 | |a 31.52 |2 bcl | ||
084 | |a 31.61 |2 bcl | ||
084 | |a *57-01 |2 msc | ||
084 | |a 55-01 |2 msc | ||
084 | |a 55M05 |2 msc | ||
084 | |a 55M20 |2 msc | ||
084 | |a 55N35 |2 msc | ||
084 | |a 55U25 |2 msc | ||
084 | |a 57R19 |2 msc | ||
084 | |a 57R20 |2 msc | ||
084 | |a 57R22 |2 msc | ||
084 | |a 58-01 |2 msc | ||
084 | |a 58A12 |2 msc | ||
084 | |a SI 320 |2 rvk | ||
084 | |a SK 300 |2 rvk | ||
084 | |a MAT 582f |2 stub | ||
084 | |a MAT 550f |2 stub | ||
049 | |a UAMI | ||
100 | 1 | |a Karoubi, Max. | |
240 | 1 | 0 | |a Méthodes de géométrie différentielle en topologie algébrique. |l English |
245 | 1 | 0 | |a Algebraic topology via differential geometry / |c M. Karoubi and C. Leruste. |
260 | |a Cambridge [Cambridgeshire] ; |a New York : |b Cambridge University Press, |c 1987. | ||
300 | |a 1 online resource (363 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series, |x 0076-0552 ; |v 99 | |
500 | |a Translation of: Méthodes de géométrie différentielle en topologie algébrique. | ||
504 | |a Includes bibliographical references (page 360) and index. | ||
546 | |a Translation of: Methodes de geometrie differentielle en topologie algebrique. | ||
588 | 0 | |a Print version record. | |
520 | |a In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduced to De Rham cohomology, and explicit and detailed calculations are present as examples. Topics covered include Mayer-Vietoris exact sequences, relative cohomology, Pioncare duality and Lefschetz's theorem. This book will be suitable for graduate students taking courses in algebraic topology and in differential topology. Mathematicians studying relativity and mathematical physics will find this an invaluable introduction to the techniques of differential geometry. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Introduction; I ALGEBRAIC PRELIMINARIES; 1 BILINEAR MAPS; 2 TENSOR PRODUCT OF TWO VECTOR SPACES; 2.1 Theorem: This construction can always be performed.; 2.2 Remarks:; 2. 3 Proposition; 2.4 Notation; 2.5 Theorem; 2.6 Corollary:; 2.7 Tensor product of Abelian groups; 3 COMMUTATIVITY. ASSOCIATIVITY; 3.1 Theorem:; 3.2 Theorem:; 3.3 Theorem:; 3.4 Remark:; 4 TENSOR PRODUCT OF LINEAR MAPS; 4.1 Theorem:; 4.2 Remark:; 4. 3 Proposi tion:; 5 TENSOR PRODUCT WITH A DIRECT SUM ('DISTRIBUTIVITY'); 5.1 Theorem; 5.2 Corollary; 5.3 Corollary; 6 EXACT SEQUENCES | |
505 | 8 | |a 6.1 Definitions:6.2 Remark:; 6.3 Examples:; 6.4 Definition:; 6.5 Lemma:; 6.6 Corollary:; 6.7 Theorem:; 6.8 Important Remark:; 6.9 Theorem:; 6.10 Corollary.; 6.11 Remark:; 7 TENSOR ALGEBRA; 7.1 Definitions:; 7.2 Theorem:; 7.3 Remark:; 7.4 Theorem:; 7.5 Remark:; 7.6 Theorem:; 8 EXTERIOR POWERS. EXTERIOR ALGEBRA; 8.1 Definition:; 8.2 Proposition:; 8.3 Definitions:; 8.4 Remark:; 8.5 Theorem:; 8.6 Definition:; 8.7 Theorem:; 8.8 Remark:; 8.9 Theorem:; 8.10 Theorem:; 8.11 Theorem:; 8.12 Theorem:; 9 SYMMETRIC POWERS. SYMMETRIC ALGEBRA; 9.1 Definition:; 9.2 Definition:; 9.3 Theorem:; 9.4 Definition | |
505 | 8 | |a 9.5 Theorem:9.6 Theorem:; 9.7 Theorem:; 10 DUALITY; 10.1 Theorem:; 10.2 Corollary:; 10.3 Theorem; 11 MODULES; II DIFFERENTIAL FORMS ON AN OPEN SUBSET OF Rn; 0 ELEMENTARY RESULTS OF DIFFERENTIAL CALCULUS; 0.1 First Order; 0.2 Second and Higher Orders; 1 DIFFERENTIAL FORMS; 1.1 -Definition:; 1.2 Definition:; 1.3 Remarks:; 1.4 Theorem:; 1.5 Remark:; 1.6 Notation:; 1.7 Example:; 2 EXTERIOR DIFFERENTIAL; 2.1 Theorem:; 2.2 Example:; 2 . 3 Theorem:; 2.4 Example:; 2.5 Theorem:; 3 INVERSE IMAGE OF A DIFFERENTIAL FORM; 3.1 Theorem:; 3.2 Explicit Formula; 4 DB i?HAM COHOMOLOGY; 4.1 Definition | |
505 | 8 | |a 4.2 Remark:4.3 Remark:; 4.4 Theorem:; 5 HOMOTOPY; 5.1 Definition:; 5.2 Structure of (UxR; 5.3 Lemma:; 5.4 Definition:; 5.5 Lemma:; 5.6 Definition:; 5.7 Definition:; 5.8 Theorem:; 5.9 Corollary:; 6 COHOMOLOGY OF Rn; 6 .1 Lemma; 6.2 Lemma:; 6.3 Theorem:; 6.4 Remark:; 7 COHCMOLOGY OF R2\{0}; 7.1 Lemma:; 7.2 Theorem:; 7.3 Technical Lemma:; 7.4 Theorem:; 7.5 Corollary:; 7.6 Theorem:; 7.7 Corollary:; 7.8 Recapitulation:; 8 DIFFERENTIAL FORMS WITH COMPACT SUPPORTS; 8.1 Lemma:; 8.2 Definitions:; 8.3 Important Remark:; 8.4 Theorem:; 8.5 Theorem:; 8.6 Theorem:; 8.7 Remarks | |
505 | 8 | |a III DIFFERENTIABLE MANIFOLDS1 TOPOLOGICAL MANIFOLDS; 1.1 Definition:; 1.2 Remarks; 1.3 Theorem:; 1.4 Theorem:; 1.5 Theorem:; 1.6 Definition:; 2 FIRST EXAMPLES; 2.1 Example:; 2.2 Example:; 2.3 Remark:; 2.4 Definitions:; 2.5 Lemma:; 2.6 Lenma:; 2.7 Theorem:; 2.8 Theorem:; 2.9 Theorem:; 2.10 Theorem:; 3 THE IMPLICIT FUNCTION THEOREM; 3.1 Theorem; 3.2 Corollary.; 3.3 Remark:; 4 EXAMPLES RESUMED; 4.1 Example:; 4.2 Definition:; 4.3 Theorem:; 4.4 Corollary:; 4.5 Remark:; 4.6 Theorem:; 4.7 Definition:; 4.8 Theorem:; 4.10 Theorem:; 4.11 Important Remark:; 4.12 Lemma:; 4.13 Corollary:; 4.14 Theorem | |
590 | |a eBooks on EBSCOhost |b EBSCO eBook Subscription Academic Collection - Worldwide | ||
650 | 0 | |a Algebraic topology. | |
650 | 0 | |a Geometry, Differential. | |
650 | 6 | |a Topologie algébrique. | |
650 | 6 | |a Géométrie différentielle. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Algebraic topology |2 fast | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Algebraische Topologie |2 gnd | |
650 | 7 | |a DeRham-Kohomologie |2 gnd | |
650 | 7 | |a Geometrie |2 gnd | |
650 | 7 | |a Mannigfaltigkeit |2 gnd | |
650 | 7 | |a Topologische Algebra |2 gnd | |
650 | 7 | |a Differenzierbare Mannigfaltigkeit |2 gnd | |
650 | 7 | |a Geometria diferencial (textos avançados) |2 larpcal | |
650 | 7 | |a Topologia algébrica. |2 larpcal | |
650 | 7 | |a Cohomologia. |2 larpcal | |
650 | 7 | |a Topologie algébrique. |2 ram | |
650 | 7 | |a Géométrie différentielle. |2 ram | |
700 | 1 | |a Leruste, C. | |
776 | 0 | 8 | |i Print version: |a Karoubi, Max. |s Méthodes de géométrie différentielle en topologie algébrique. English. |t Algebraic topology via differential geometry. |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1987 |z 0521317142 |w (DLC) 86017087 |w (OCoLC)13823350 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 99. |x 0076-0552 | |
856 | 4 | 0 | |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552511 |z Texto completo |
938 | |a Askews and Holts Library Services |b ASKH |n AH13428049 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385278 | ||
938 | |a ebrary |b EBRY |n ebr10562336 | ||
938 | |a EBSCOhost |b EBSC |n 552511 | ||
938 | |a Internet Archive |b INAR |n algebraictopolog1987karo | ||
938 | |a YBP Library Services |b YANK |n 10407386 | ||
938 | |a YBP Library Services |b YANK |n 10666561 | ||
938 | |a YBP Library Services |b YANK |n 3688712 | ||
994 | |a 92 |b IZTAP |