Cargando…

Algebraic topology via differential geometry /

In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduce...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karoubi, Max
Otros Autores: Leruste, C.
Formato: Electrónico eBook
Idioma:Inglés
Francés
Publicado: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1987.
Colección:London Mathematical Society lecture note series ; 99.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn840416224
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130422s1987 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCO  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d OCLCO  |d UAB  |d VTS  |d REC  |d OCLCO  |d STF  |d YDX  |d M8D  |d OCLCO  |d UKAHL  |d OCLCQ  |d S2H  |d K6U  |d VLY  |d INARC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 797842539  |a 1115958647  |a 1145773432  |a 1162539426  |a 1241844552  |a 1242482161 
020 |a 9781107361317  |q (electronic bk.) 
020 |a 1107361311  |q (electronic bk.) 
020 |a 0511629370 
020 |a 9780511629372 
020 |a 1139884220 
020 |a 9781139884228 
020 |a 1107366224 
020 |a 9781107366220 
020 |a 1107370957 
020 |a 9781107370951 
020 |a 1107369967 
020 |a 9781107369962 
020 |a 1299404022 
020 |a 9781299404021 
020 |a 1107363764 
020 |a 9781107363762 
020 |z 0521317142 
020 |z 9780521317146 
020 |z 9780511629372 
029 1 |a DEBBG  |b BV043142682 
029 1 |a DEBSZ  |b 421266139 
029 1 |a GBVCP  |b 804574138 
029 1 |a DKDLA  |b 820120-katalog:9910052708605765 
035 |a (OCoLC)840416224  |z (OCoLC)797842539  |z (OCoLC)1115958647  |z (OCoLC)1145773432  |z (OCoLC)1162539426  |z (OCoLC)1241844552  |z (OCoLC)1242482161 
041 1 |a eng  |h fre 
050 4 |a QA612  |b .K3613 1987eb 
072 7 |a MAT  |x 002050  |2 bisacsh 
082 0 4 |a 512/.55  |2 22 
084 |a 31.52  |2 bcl 
084 |a 31.61  |2 bcl 
084 |a *57-01  |2 msc 
084 |a 55-01  |2 msc 
084 |a 55M05  |2 msc 
084 |a 55M20  |2 msc 
084 |a 55N35  |2 msc 
084 |a 55U25  |2 msc 
084 |a 57R19  |2 msc 
084 |a 57R20  |2 msc 
084 |a 57R22  |2 msc 
084 |a 58-01  |2 msc 
084 |a 58A12  |2 msc 
084 |a SI 320  |2 rvk 
084 |a SK 300  |2 rvk 
084 |a MAT 582f  |2 stub 
084 |a MAT 550f  |2 stub 
049 |a UAMI 
100 1 |a Karoubi, Max. 
240 1 0 |a Méthodes de géométrie différentielle en topologie algébrique.  |l English 
245 1 0 |a Algebraic topology via differential geometry /  |c M. Karoubi and C. Leruste. 
260 |a Cambridge [Cambridgeshire] ;  |a New York :  |b Cambridge University Press,  |c 1987. 
300 |a 1 online resource (363 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series,  |x 0076-0552 ;  |v 99 
500 |a Translation of: Méthodes de géométrie différentielle en topologie algébrique. 
504 |a Includes bibliographical references (page 360) and index. 
546 |a Translation of: Methodes de geometrie differentielle en topologie algebrique. 
588 0 |a Print version record. 
520 |a In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduced to De Rham cohomology, and explicit and detailed calculations are present as examples. Topics covered include Mayer-Vietoris exact sequences, relative cohomology, Pioncare duality and Lefschetz's theorem. This book will be suitable for graduate students taking courses in algebraic topology and in differential topology. Mathematicians studying relativity and mathematical physics will find this an invaluable introduction to the techniques of differential geometry. 
505 0 |a Cover; Title; Copyright; Contents; Introduction; I ALGEBRAIC PRELIMINARIES; 1 BILINEAR MAPS; 2 TENSOR PRODUCT OF TWO VECTOR SPACES; 2.1 Theorem: This construction can always be performed.; 2.2 Remarks:; 2. 3 Proposition; 2.4 Notation; 2.5 Theorem; 2.6 Corollary:; 2.7 Tensor product of Abelian groups; 3 COMMUTATIVITY. ASSOCIATIVITY; 3.1 Theorem:; 3.2 Theorem:; 3.3 Theorem:; 3.4 Remark:; 4 TENSOR PRODUCT OF LINEAR MAPS; 4.1 Theorem:; 4.2 Remark:; 4. 3 Proposi tion:; 5 TENSOR PRODUCT WITH A DIRECT SUM ('DISTRIBUTIVITY'); 5.1 Theorem; 5.2 Corollary; 5.3 Corollary; 6 EXACT SEQUENCES 
505 8 |a 6.1 Definitions:6.2 Remark:; 6.3 Examples:; 6.4 Definition:; 6.5 Lemma:; 6.6 Corollary:; 6.7 Theorem:; 6.8 Important Remark:; 6.9 Theorem:; 6.10 Corollary.; 6.11 Remark:; 7 TENSOR ALGEBRA; 7.1 Definitions:; 7.2 Theorem:; 7.3 Remark:; 7.4 Theorem:; 7.5 Remark:; 7.6 Theorem:; 8 EXTERIOR POWERS. EXTERIOR ALGEBRA; 8.1 Definition:; 8.2 Proposition:; 8.3 Definitions:; 8.4 Remark:; 8.5 Theorem:; 8.6 Definition:; 8.7 Theorem:; 8.8 Remark:; 8.9 Theorem:; 8.10 Theorem:; 8.11 Theorem:; 8.12 Theorem:; 9 SYMMETRIC POWERS. SYMMETRIC ALGEBRA; 9.1 Definition:; 9.2 Definition:; 9.3 Theorem:; 9.4 Definition 
505 8 |a 9.5 Theorem:9.6 Theorem:; 9.7 Theorem:; 10 DUALITY; 10.1 Theorem:; 10.2 Corollary:; 10.3 Theorem; 11 MODULES; II DIFFERENTIAL FORMS ON AN OPEN SUBSET OF Rn; 0 ELEMENTARY RESULTS OF DIFFERENTIAL CALCULUS; 0.1 First Order; 0.2 Second and Higher Orders; 1 DIFFERENTIAL FORMS; 1.1 -Definition:; 1.2 Definition:; 1.3 Remarks:; 1.4 Theorem:; 1.5 Remark:; 1.6 Notation:; 1.7 Example:; 2 EXTERIOR DIFFERENTIAL; 2.1 Theorem:; 2.2 Example:; 2 . 3 Theorem:; 2.4 Example:; 2.5 Theorem:; 3 INVERSE IMAGE OF A DIFFERENTIAL FORM; 3.1 Theorem:; 3.2 Explicit Formula; 4 DB i?HAM COHOMOLOGY; 4.1 Definition 
505 8 |a 4.2 Remark:4.3 Remark:; 4.4 Theorem:; 5 HOMOTOPY; 5.1 Definition:; 5.2 Structure of (UxR; 5.3 Lemma:; 5.4 Definition:; 5.5 Lemma:; 5.6 Definition:; 5.7 Definition:; 5.8 Theorem:; 5.9 Corollary:; 6 COHOMOLOGY OF Rn; 6 .1 Lemma; 6.2 Lemma:; 6.3 Theorem:; 6.4 Remark:; 7 COHCMOLOGY OF R2\{0}; 7.1 Lemma:; 7.2 Theorem:; 7.3 Technical Lemma:; 7.4 Theorem:; 7.5 Corollary:; 7.6 Theorem:; 7.7 Corollary:; 7.8 Recapitulation:; 8 DIFFERENTIAL FORMS WITH COMPACT SUPPORTS; 8.1 Lemma:; 8.2 Definitions:; 8.3 Important Remark:; 8.4 Theorem:; 8.5 Theorem:; 8.6 Theorem:; 8.7 Remarks 
505 8 |a III DIFFERENTIABLE MANIFOLDS1 TOPOLOGICAL MANIFOLDS; 1.1 Definition:; 1.2 Remarks; 1.3 Theorem:; 1.4 Theorem:; 1.5 Theorem:; 1.6 Definition:; 2 FIRST EXAMPLES; 2.1 Example:; 2.2 Example:; 2.3 Remark:; 2.4 Definitions:; 2.5 Lemma:; 2.6 Lenma:; 2.7 Theorem:; 2.8 Theorem:; 2.9 Theorem:; 2.10 Theorem:; 3 THE IMPLICIT FUNCTION THEOREM; 3.1 Theorem; 3.2 Corollary.; 3.3 Remark:; 4 EXAMPLES RESUMED; 4.1 Example:; 4.2 Definition:; 4.3 Theorem:; 4.4 Corollary:; 4.5 Remark:; 4.6 Theorem:; 4.7 Definition:; 4.8 Theorem:; 4.10 Theorem:; 4.11 Important Remark:; 4.12 Lemma:; 4.13 Corollary:; 4.14 Theorem 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Algebraic topology. 
650 0 |a Geometry, Differential. 
650 6 |a Topologie algébrique. 
650 6 |a Géométrie différentielle. 
650 7 |a MATHEMATICS  |x Algebra  |x Linear.  |2 bisacsh 
650 7 |a Algebraic topology  |2 fast 
650 7 |a Geometry, Differential  |2 fast 
650 7 |a Algebraische Topologie  |2 gnd 
650 7 |a DeRham-Kohomologie  |2 gnd 
650 7 |a Geometrie  |2 gnd 
650 7 |a Mannigfaltigkeit  |2 gnd 
650 7 |a Topologische Algebra  |2 gnd 
650 7 |a Differenzierbare Mannigfaltigkeit  |2 gnd 
650 7 |a Geometria diferencial (textos avançados)  |2 larpcal 
650 7 |a Topologia algébrica.  |2 larpcal 
650 7 |a Cohomologia.  |2 larpcal 
650 7 |a Topologie algébrique.  |2 ram 
650 7 |a Géométrie différentielle.  |2 ram 
700 1 |a Leruste, C. 
776 0 8 |i Print version:  |a Karoubi, Max.  |s Méthodes de géométrie différentielle en topologie algébrique. English.  |t Algebraic topology via differential geometry.  |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1987  |z 0521317142  |w (DLC) 86017087  |w (OCoLC)13823350 
830 0 |a London Mathematical Society lecture note series ;  |v 99.  |x 0076-0552 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552511  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13428049 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385278 
938 |a ebrary  |b EBRY  |n ebr10562336 
938 |a EBSCOhost  |b EBSC  |n 552511 
938 |a Internet Archive  |b INAR  |n algebraictopolog1987karo 
938 |a YBP Library Services  |b YANK  |n 10407386 
938 |a YBP Library Services  |b YANK  |n 10666561 
938 |a YBP Library Services  |b YANK  |n 3688712 
994 |a 92  |b IZTAP