Representations of algebras : proceedings of the Durham Symposium, 1985 /
In this book the latest developments in representation theory are surveyed in a series of expository articles based on lectures given at the 1985 LMS Durham Symposium on representations of algebras. The emphasis is on the representation type of finite-dimensional algebras. Topics covered include alm...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico Congresos, conferencias eBook |
Idioma: | Inglés |
Publicado: |
Cambridge [Cambridgeshire] ; New York :
Cambridge University Press,
©1986.
|
Colección: | London Mathematical Society lecture note series ;
116. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title; copyright; Contents; Introduction; Representation theory of finite-dimensional algebras; LECTURE 1 : THE AUSLANDER-REITEN QUIVER; LECTURE 2 : SEPARATING SUBCATEGORIES: CONNECTING COMPONENTS AND SEPARATING TUBULAR FAMILIES; LECTURE 3 : REPETITIVE ALGEBRAS; References; A survey of existence theorems for almost split sequences; References; Representations of posets and tame matrix problems; 1. The theory of matrix problems can be considered in a natural; 2. Posets of finite type; 3. Tame schurian categories; Literature; Geometry of representations of quivers; INTRODUCTION
- 1. QUIVERS AND REPRESENTATIONS2. THE REPRESENTATION SPACE OF A QLIVER; 3. THE FUNDAMENTAL SET; 4. INDECOMPOSABLES AND ROOT SYSTEMS; 5. PROOF OF THE FUNDAMENTAL LEMMA; REFEBENCES; Cohen-Macaulay modules on hypersurface singularities; 1. SIMPLE HYPERSURFACE SINGULARITIES; 1.1 Notation; 1.2 Families of Hypersurface Singularities; 1.3 The Classification of Simple Singularities; 2. HYPERSURFACE SINGULARITIES OF DIMENSION ONE AND TWO; 2.1 Maximal Cohen-Macaulay Modules; 2.2 Group Representations; 2.3 Vectorbundles on the Desingularisation; 2.4 Simple Plane Curve Singularities
- 3. HYPERSURFACE SINGULARITIES OF FINITE COHEN-MACAULAY TYPE3.1 Matrix Factorisations; 3.2 Double branched Covers; 3.3 Constructing Families of MCM's; 4. Miscellaneous Remarks; REFERENCES; Almost split sequences and algebraic geometry; 1. Complete rational double points; 2. Protective curves; 3. Finite Cohen-Macaulay type; References; Representation rings of finite groups; Preface; FIRST LECTURE : Nilpotent elements in representation rings; 1. TENSOR PRODUCTS; 2. ALMOST SPLIT SEQUENCES; 3. NILPOTENT ELEMENTS IN A(G); 4. COHOMOLOGICAL CONSTRUCTION OF NILPOTENT ELEMENTS
- SECOND LECTURE : VARIETIES FOR MODULES : A SAMPLE CALCULATION1. Definitions and basic properties; 2. Cohomology of the dihedral two-groups; 3. MODULES FOR THE DIHEDRAL TWO-GROUPS; 4. THE VARIETIES FOR THE INDECOMPOSABLE kD2n -MODULES; REFERENCES