Cargando…

The subgroup structure of the finite classical groups /

With the classification of the finite simple groups complete, much work has gone into the study of maximal subgroups of almost simple groups. In this volume the authors investigate the maximal subgroups of the finite classical groups and present research into these groups as well as proving many new...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kleidman, Peter
Otros Autores: Liebeck, M. W. (Martin W.), 1954-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1990.
Colección:London Mathematical Society lecture note series ; 129.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn839305470
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130415s1990 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d IDEBK  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d UAB  |d VTS  |d REC  |d STF  |d AUD  |d MHW  |d EBLCP  |d DEBSZ  |d AU@  |d YDXIT  |d CEF  |d M8D  |d UKAHL  |d OL$  |d OCLCQ  |d UKBTH  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ  |d YDX  |d OCLCQ  |d OCLCO 
019 |a 708563780  |a 776972362  |a 1102539109  |a 1113060436 
020 |a 9781107361508  |q (electronic bk.) 
020 |a 1107361508  |q (electronic bk.) 
020 |a 9780511892394  |q (e-book) 
020 |a 051189239X  |q (e-book) 
020 |a 9781107366411  |q (electronic book) 
020 |a 1107366410  |q (electronic book) 
020 |a 9780511629235  |q (electronic book) 
020 |a 0511629230  |q (electronic book) 
020 |a 1107371139 
020 |a 9781107371132 
020 |a 1107369746 
020 |a 9781107369740 
020 |a 1299404200 
020 |a 9781299404205 
020 |a 1107363950 
020 |a 9781107363953 
020 |z 052135949X 
020 |z 9780521359498 
029 1 |a AU@  |b 000055792511 
029 1 |a DEBBG  |b BV043072354 
029 1 |a DEBSZ  |b 382457013 
029 1 |a DEBSZ  |b 421267305 
029 1 |a GBVCP  |b 804561923 
029 1 |a DKDLA  |b 820120-katalog:9910051148805765 
035 |a (OCoLC)839305470  |z (OCoLC)708563780  |z (OCoLC)776972362  |z (OCoLC)1102539109  |z (OCoLC)1113060436 
050 4 |a QA171  |b .K53 1990eb 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512/.2  |2 22 
084 |a 31.21  |2 bcl 
084 |a *20D06  |2 msc 
084 |a 20-02  |2 msc 
084 |a 20D30  |2 msc 
084 |a 20E28  |2 msc 
084 |a 20G40  |2 msc 
049 |a UAMI 
100 1 |a Kleidman, Peter. 
245 1 4 |a The subgroup structure of the finite classical groups /  |c Peter Kleidman, Martin Liebeck. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1990. 
300 |a 1 online resource (vii, 303 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 129 
504 |a Includes bibliographical references (pages 289-295) and indexes. 
588 0 |a Print version record. 
520 |a With the classification of the finite simple groups complete, much work has gone into the study of maximal subgroups of almost simple groups. In this volume the authors investigate the maximal subgroups of the finite classical groups and present research into these groups as well as proving many new results. In particular, the authors develop a unified treatment of the theory of the 'geometric subgroups' of the classical groups, introduced by Aschbacher, and they answer the questions of maximality and conjugacy and obtain the precise shapes of these groups. Both authors are experts in the field and the book will be of considerable value not only to group theorists, but also to combinatorialists and geometers interested in these techniques and results. Graduate students will find it a very readable introduction to the topic and it will bring them to the very forefront of research in group theory. 
505 0 |a Cover -- Title -- Copyright -- Preface -- Standard notation and terminology -- Contents -- Chapter 1 Motivation and Setting for the Results -- 1.1 Introduction -- 1.2 The classical groups -- 1.3 The alternating, sporadic and exceptional groups -- Chapter 2 Basic Properties of the Classical Groups -- 2.1 Introduction -- 2.2 The linear groups -- 2.3 The unitary groups -- 2.4 The symplectic groups -- 2.5 The orthogonal groups -- 2.6 Orthogonal groups in odd dimension -- 2.7 Orthogonal groups with Witt defect 0. 
505 8 |a 2.8 Orthogonal groups with Witt defect 1 -- 2.9 Structure and isomorphisms -- 2.10 Classical groups acting on their associated geometries -- Chapter 3 The Statement of the Main Theorem -- 3.1 Introduction -- 3.2 How to determine the conjugacy amongst members of C -- 3.3 How to determine the structure of members of C -- 3.4 How to determine the overgroups of members of C -- 3.5 The tables -- Chapter 4 The Structure and Conjugacy of the Members of C -- 4.0 Introduction -- 4.1 The reducible subgroups C1 -- 4.2 The imprimitive subgroups C2. 
505 8 |a 4.3 The field extension subgroups C3 -- 4.4 The tensor product subgroups C4 -- 4.5 The subfield subgroups C5 -- 4.6 The symplectic-type subgroups C6 -- 4.7 The tensor product subgroups C7 -- 4.8 The classical subgroups C8 -- Chapter 5 Properties of the Finite Simple Groups -- 5.1 Basic properties of the simple groups -- 5.2 Subgroups of the simple groups -- 5.3 Representations of the simple groups -- 5.4 Groups of Lie type: representations in the natural characteristic -- 5.5 Further results on representations -- Chapter 6 Non-maximal Subgroups in C: the Examples. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Group theory. 
650 0 |a Finite groups. 
650 6 |a Groupes finis. 
650 6 |a Théorie des groupes. 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Finite groups  |2 fast 
650 7 |a Group theory  |2 fast 
650 7 |a Groupes, théorie des.  |2 ram 
700 1 |a Liebeck, M. W.  |q (Martin W.),  |d 1954- 
776 0 8 |i Print version:  |a Kleidman, Peter.  |t Subgroup structure of the finite classical groups.  |d Cambridge ; New York : Cambridge University Press, 1990  |z 052135949X  |w (DLC) 90176384  |w (OCoLC)21652322 
830 0 |a London Mathematical Society lecture note series ;  |v 129. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552395  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13428035 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385295 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1182432 
938 |a ebrary  |b EBRY  |n ebr10441718 
938 |a EBSCOhost  |b EBSC  |n 552395 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154517 
938 |a YBP Library Services  |b YANK  |n 10370397 
938 |a YBP Library Services  |b YANK  |n 10689667 
938 |a YBP Library Services  |b YANK  |n 10407404 
938 |a YBP Library Services  |b YANK  |n 3279890 
994 |a 92  |b IZTAP