Cargando…

Stopping time techniques for analysts and probabilists /

This book considers convergence of adapted sequences of real and Banach space-valued integrable functions, emphasizing the use of stopping time techniques. Not only are highly specialized results given, but also elementary applications of these results. The book starts by discussing the convergence...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Egghe, L. (Leo)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1984.
Colección:London Mathematical Society lecture note series ; 100.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn839305257
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130415s1984 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d REC  |d STF  |d M8D  |d OCLCO  |d OCLCA  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 715162722 
020 |a 9781107361324  |q (electronic bk.) 
020 |a 110736132X  |q (electronic bk.) 
020 |z 0521317150 
020 |z 9780521317153 
029 1 |a DEBBG  |b BV043072513 
029 1 |a DEBSZ  |b 421266651 
029 1 |a GBVCP  |b 804560250 
035 |a (OCoLC)839305257  |z (OCoLC)715162722 
050 4 |a QA274.5  |b .E37 1984eb 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2/87  |2 22 
084 |a 31.70  |2 bcl 
084 |a 31.46  |2 bcl 
049 |a UAMI 
100 1 |a Egghe, L.  |q (Leo) 
245 1 0 |a Stopping time techniques for analysts and probabilists /  |c L. Egghe. 
260 |a Cambridge [Cambridgeshire] ;  |a New York :  |b Cambridge University Press,  |c 1984. 
300 |a 1 online resource (xvi, 351 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 100 
504 |a Includes bibliographical references (pages 333-343) and index. 
588 0 |a Print version record. 
520 |a This book considers convergence of adapted sequences of real and Banach space-valued integrable functions, emphasizing the use of stopping time techniques. Not only are highly specialized results given, but also elementary applications of these results. The book starts by discussing the convergence theory of martingales and sub-(or super- ) martingales with values in a Banach space with or without the Radon-Nikodym property. Several inequalities which are of use in the study of the convergence of more general adapted sequence such as (uniform) amarts, mils and pramarts are proved and sub- and superpramarts are discussed and applied to the convergence of pramarts. Most of the results have a strong relationship with (or in fact are characterizations of) topological or geometrical properties of Banach spaces. The book will interest research and graduate students in probability theory, functional analysis and measure theory, as well as proving a useful textbook for specialized courses on martingale theory. 
505 0 |a Cover; Title; Copyright; Contents; Preface; Chapter I : Types of convergence; I.1. Introduction; I.1.1. Measurable functions; I.1.2. Integrable functions; I.2. Adapted sequences; I.2.1. Definition; I.2.2. Conditional expectations; I.3. Convergence; I.3.1. Pointwise convergence; I.3.2. Mean convergence; I.3.3. Pettis convergence; I.3.4. Convergence in probability; I.3.5. Convergence in probability in the stopping time sense; I.4. Notes and remarks; Chapter II : Martingale convergence theorems; II. 1. Elementary results; II. 2. Main results 
505 8 |a II. 3. Convergence of martingales in general Banach spacesII. 4. Notes and remarks; Chapter III : Sub- and supermartingale convergence theorems; III. 1. Preliminary results; III. 2. Heinich's theorem on the convergence of positive submartingales; III. 3. Convergence of general submartingales; III. 4. Convergence of supermartingales; III. 5. Submartingale convergence in Banach lattices without (RNP); III. 6. Notes and remarks; Chapter IV : Basic inequalities for adapted sequences; IV. 1. Basic inequalities; IV. 2. Failure of the inequalities; IV. 3. Notes and remarks 
505 8 |a Chapter V : Convergence of generalized martingales in Banach spaces -- the mean wayV. I. Uniform amarts; V.2. Amarts; V.3. Weak sequential amarts; V.4. Weak amarts; V.5. Semiamarts; V.6. Notes and remarks; Chapter VI : General directed index sets and applications of amart theory; VI. 1. Convergence of adapted nets; VI. 2. Applications of amart convergence results; VI. 3. Notes and remarks; Chapter VII : Disadvantages of amarts. Convergence of generalized martingales in Banach spaces -- the pointwise way; VII. 1. Disadvantages of amarts; VII. 2. Pramarts, mils, GFT; VII. 3. Notes and remarks 
505 8 |a Chapter VIII : Convergence of generalized sub- and supermartingales in Banach latticesVIII. 1. Subpramarts, superpramarts and related notions; VIII. 2. Applications to pramartconvergence; VIII. 3. Notes and remarks; Chapter IX : Closing remarks; IX. 1. A general remark concerning scalar convergence; IX. 2. Summary of the most important convergence results; IX. 3. Convergence of adapted sequences of Pettis integrable functions; References; List of notations; Subject index 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Martingales (Mathematics) 
650 0 |a Convergence. 
650 6 |a Martingales (Mathématiques) 
650 6 |a Convergence (Mathématiques) 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Convergence.  |2 fast  |0 (OCoLC)fst00877195 
650 7 |a Martingales (Mathematics)  |2 fast  |0 (OCoLC)fst01010880 
650 7 |a Funktionalanalysis  |2 gnd 
650 7 |a Konvergenz  |2 gnd 
650 7 |a Martingal  |2 gnd 
650 7 |a Wahrscheinlichkeitsrechnung  |2 gnd 
650 1 7 |a Waarschijnlijkheid (statistiek)  |2 gtt 
650 1 7 |a Convergentie (wiskunde)  |2 gtt 
650 7 |a Martingales (mathématiques)  |2 ram 
650 7 |a Convergence (mathématiques)  |2 ram 
776 0 8 |i Print version:  |a Egghe, L. (Leo).  |t Stopping time techniques for analysts and probabilists.  |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1984  |z 0521317150  |w (DLC) 84045433  |w (OCoLC)11045340 
830 0 |a London Mathematical Society lecture note series ;  |v 100. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552458  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10450815 
938 |a EBSCOhost  |b EBSC  |n 552458 
938 |a YBP Library Services  |b YANK  |n 10407387 
994 |a 92  |b IZTAP