Tabla de Contenidos:
  • HEURISTICS ; HEURISTICS ; CONTENTS ; PREFACE ; CONTINUOUS-GRASP REVISITED; Abstract; 1.Introduction; 1.1.Unconstrained global optimization and metaheuristics; 1.2.Coupling Metaheuristics with Direct Searches; 1.3.Motivations and Directions of Our Proposals; 2.From GRASP to C-GRASP; 2.1.C-GRASP: Versions 2006 and 2010; 2.2. Construction Procedure; 2.3.Local Improvement Procedure; 2.4.Summary of Parameters and Speci cities; 3.Revisiting C-GRASP: the Version 2012; 3.1.Construction Procedure with Linear Complexity; 3.2.Local Improvement by Direct Search; 3.3.Control of Discretization.
  • 4.Numerical Experiments4.1.Protocols and Benchmarks; 4.2.ConvergenceAnalysisandValidationofthePropositions; 4.3.Precision Within Limited Evaluation Budget; 4.4.Strengths and Weaknesses; Conclusion; A Detailed Experimental Results; A1.Convergence Results; A2.Precision Within Limited Evaluation Budget; B Benchmark Functions; References; THE NOISING METHODS ; ABSTRACT ; 1. INTRODUCTION ; 2. PRINCIPLES OF THE NOISING METHODS ; 2.1. Choice of the Elementary Transformation ; 2.2. How to Scan the Neighbourhood ; 2.3. How to Add a Noise.
  • 2.4. The Probability Distribution of the Noise and Links with Some Other Metaheuristics 2.5. Parameters of the Noising Methods ; 2.6. Automatic Tuning of the Parameters ; 2.7. Variants ; 3. APPLICATIONS OF THE NOISING METHODS; 3.1. Graph Partitioning ; 3.2. Linear Ordering Problem ; 3.3. Travelling Salesman Problem ; CONCLUSION ; APPENDIX ; REFERENCES ; MATHEURISTICS: EMBEDDING MILP SOLVERS INTO HEURISTIC ALGORITHMS FOR COMBINATORIAL OPTIMIZATION PROBLEMS; Abstract; 1.Introduction; 2.Local Branching; 2.1.A Local Branching Procedure for Network Design; 3.VariablesPartitioningLocalSearch(VPLS)
  • 3.1.AVPLS Procedure for the Two-Machine Total Completion Time Flow Shop Problem3.2.AVPLS Approach for Nurse Rostering; 4.Continous Relaxation Based (CRB)Matheuristics; 4.1.Feasibility Pump for General MILPs; 4.2.ACRB Matheuristic Procedure for the Closest String Problem; 4.3.A CRB Matheuristic Procedure for the Multi-dimensional Knapsack; 5.GreedyBasedMatheuristics; 5.1.A Greedy Based Matheuristic Procedure for the Eternity II Problem; Conclusion; References.
  • AN EMPIRICAL INVESTIGATION OF DIFFERENT SOLUTION STRATEGIES FOR META-HEURISTIC OPTIMIZATION: SOLUTION REPRESENTATION, DIVERSITY AND SPACE REDUCTION Abstract; 1.Introduction; 2.Characteristicsofthesolutionsearchprocess; 2.1.Solution representation; 2.2.Solution Diversity; 2.3.Solution Space Reduction; 3.TwoExampleCaseStudies; 3.1.Resource-constrained Project Scheduling; 3.1.1.Solution Representation; 3.1.2.Solution Diversity; 3.1.3.Space Reduction; 3.1.4.Experimental Results for Project Scheduling; 3.2.Personnel Scheduling; 3.2.1.Solution Representation; 3.2.2.Solution Diversity.