|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn839304956 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130415s1988 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d IDEBK
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d OCLCQ
|d HEBIS
|d OCLCO
|d UAB
|d OCLCQ
|d VTS
|d OCLCA
|d REC
|d OCLCO
|d STF
|d AU@
|d OCLCO
|d M8D
|d OCLCO
|d SFB
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 704520637
|
020 |
|
|
|a 9781107361355
|q (electronic bk.)
|
020 |
|
|
|a 1107361354
|q (electronic bk.)
|
020 |
|
|
|a 9780511600654
|q (e-book)
|
020 |
|
|
|a 0511600658
|q (e-book)
|
020 |
|
|
|z 0521336465
|
020 |
|
|
|z 9780521336468
|
029 |
1 |
|
|a DEBBG
|b BV043069989
|
029 |
1 |
|
|a DEBSZ
|b 421267291
|
029 |
1 |
|
|a GBVCP
|b 80455871X
|
035 |
|
|
|a (OCoLC)839304956
|z (OCoLC)704520637
|
050 |
|
4 |
|a QA171
|b .O44 1988eb
|
072 |
|
7 |
|a MAT
|x 014000
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.22
|2 22
|
084 |
|
|
|a PB 09
|2 blsrissc
|
084 |
|
|
|a *18-02
|2 msc
|
084 |
|
|
|a 16-02
|2 msc
|
084 |
|
|
|a 16E20
|2 msc
|
084 |
|
|
|a 16H05
|2 msc
|
084 |
|
|
|a 16S34
|2 msc
|
084 |
|
|
|a 18F25
|2 msc
|
084 |
|
|
|a 20-02
|2 msc
|
084 |
|
|
|a 20C05
|2 msc
|
084 |
|
|
|a 20D15
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Oliver, Robert,
|d 1949-
|
245 |
1 |
0 |
|a Whitehead groups of finite groups /
|c Robert Oliver.
|
260 |
|
|
|a Cambridge [Cambridgeshire] ;
|a New York :
|b Cambridge University Press,
|c 1988.
|
300 |
|
|
|a 1 online resource (349 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 132
|
504 |
|
|
|a Includes bibliographical references (pages 340-347) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This book's aim is to make accessible techniques for studying Whitehead groups of finite groups, as well as a variety of related topics such as induction theory and p-adic logarithms. The author has included a lengthy introduction to set the scene for non-specialists who want an overview of the field, its history and its applications. The rest of the book consists of three parts: general theory, group rings of p-groups and general finite groups. The book will be welcomed by specialists in K- and L-theory and by algebraists in general as a state-of-the art survey of the area.
|
505 |
0 |
|
|a Cover; Title; Copyright; Preface; List of notation; Contents; Introduction; Historical survey; Algorithms for describing Wh(G); Survey of computations; Part I General theory; Chapter 1. Basic algebraic background; 1a. Orders in semi simple algebras; 1b. P-adic completion; 1c. Semi local rings and the Jacobson radical; 1d. Bimodule-induced homomorphisms and Morita equivalence; Chapter 2. Structure theorems for Ki of orders; 2a. Applications of the reduced norm; 2b. Logarithmic and exponential maps in p-adic orders; Chapter 3. Continuous K2 and localization sequences
|
505 |
8 |
|
|a 3a. Steinberg symbols in K2(R)3b. Continuous K2 of p-adic orders and algebras; 3c. Localization sequences for torsion in Whitehead groups; Chapter 4. The congruence subgroup problem; 4a. Symbols in K2 of p-adic fields; 4b. Continuous K2 of simple Qp-algebras; 4c. The calculation of C(Q[G]); Chapter 5 First applications of the congruence subgroup problem; 5a. Constructing and detecting elements in SKi: an example; 5b. Cl1(R[G]) and the complex representation ring; 5c. The standard involution on Whitehead groups; Chapter 6. The integral p-adic logarithm
|
505 |
8 |
|
|a 6a. The integral logarithm for p-adic group rings6b. Variants of the integral logarithm; 6c. Logarithms defined on Kc2(ZP[G]); Part II Group rings of p-groups; Chapter 7. The torsion subgroup of Whitehead groups; Chapter 8. The p-adic quotient of SK1(Z[G]): p-groups; 8a. Detection of elements; 8b. Establishing upper bounds; 8c. Examples; Chapter 9. Cl1(Z[G]) for p-groups; Chapter 10. The torsion free part of Wh(G); Part III General finite groups; Chapter 11. A quick survey of induction theory; 11a. Induction properties for Mackey functors and Green modules
|
505 |
8 |
|
|a 11b. Splitting p-local Mackey functorsChapter 12. The p-adic quotient of SK1(Z[G]): finite groups; Chapter 13. Cl1(Z[G]) for finite groups; 13a. Reduction to p-elementary groups; 13b. Reduction to p-groups; 13c. Splitting the inclusion Cl1(Z[G]) C SK1(Z[G]); Chapter 14. Examples; References; Index
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Whitehead groups.
|
650 |
|
0 |
|a Finite groups.
|
650 |
|
0 |
|a Induction (Mathematics)
|
650 |
|
6 |
|a Groupes de Whitehead.
|
650 |
|
6 |
|a Groupes finis.
|
650 |
|
6 |
|a Induction (Mathématiques)
|
650 |
|
7 |
|a MATHEMATICS
|x Group Theory.
|2 bisacsh
|
650 |
|
7 |
|a Finite groups.
|2 fast
|0 (OCoLC)fst00924908
|
650 |
|
7 |
|a Induction (Mathematics)
|2 fast
|0 (OCoLC)fst00970742
|
650 |
|
7 |
|a Whitehead groups.
|2 fast
|0 (OCoLC)fst01174810
|
650 |
|
7 |
|a Whitehead-Gruppe
|2 gnd
|
650 |
|
7 |
|a Endliche Gruppe
|2 gnd
|
650 |
|
7 |
|a Teoria dos grupos.
|2 larpcal
|
650 |
|
7 |
|a Groupes finis.
|2 ram
|
650 |
|
7 |
|a Whitehead, Groupes de.
|2 ram
|
650 |
|
7 |
|a Induction (mathématiques)
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Oliver, Robert, 1949-
|t Whitehead groups of finite groups.
|d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1988
|z 0521336465
|w (DLC) 87027725
|w (OCoLC)16805916
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 132.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552396
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10441002
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552396
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154502
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10407389
|
994 |
|
|
|a 92
|b IZTAP
|