Cargando…

Model theory and modules /

In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Prest, Mike
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, England ; New York : Cambridge University Press, 1988.
Colección:London Mathematical Society lecture note series ; 130.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title; Copyright; Dedication; Preface; Contents; Introduction; Acknowledgements; Notations and conventions; Remarks on the development of the area; Section summaries; Chapter 1 Some preliminaries; 1.1 An introduction to model theory; 1.2 Injective modules and decomposition theorems; Chapter 2 Positive primitive formulas and the sets they define; 2.1 pp formulas; 2.2 pp-types; 2.3 Pure embeddings and pure-injective modules; 2.4 pp-elimination of quantifiers; 2.5 Immediate corollaries of pp-elimination of quantifiers; 2.6 Comparison of complete theories of modules
  • 2.Z pp formulas and types in abelian groups2.L Other languages; Chapter 3 Stability and totally transcendental modules; 3.1 Stability for modules; 3.2 A structure theorem for totally transcendental modules; part I; 3.A Abelian structures; Chapter 4 Hulls; 4.1 pp-essential embeddings and the construction of hulls; 4.2 Examples of hulls; 4.3 Decomposition of injective and pure-injective modules; 4.4 Irreducible types; 4.5 Limited and unlimited types; 4.6 A structure theory for totally transcendental modules; part II; 4.C Categoricity; 4.7 The space of indecomposables
  • Chapter 5 Forking and ranks5.1 Forking and independence; 5.2 Ranks; 5.3 An algebraic characterisation of independence; 5.4 Independence when T = TXo; Chapter 6 Stability-theoretic properties of types; 6.1 Free parts of types and the stratified order; 6.2 Domination and the RK-order; 6.3 Orthogonality and the RK-order; 6.4 Regular types; 6.1 An example: injective modules over noetherian rings; 6.5 Saturation and pure-injective modules; 6.6 Multiplicity and strong types; Chapter 7 Superstable modules; 7.1 Superstable modules: the uncountable spectrum; 7.2 Modules of U-rank 1
  • 7.3 Modules of finite U-rankChapter 8 The lattice of pp-types and free realisations of pp-types; 8.1 The lattice of pp-types; 8.2 Finitely generated pp-types; 8.3 pp-types and matrices; 8.4 Duality and pure-semisimple rings; Chapter 9 Types and the structure of pure-injective modules; 9.1 Minimal pairs; 9.2 Associated types; 9.3 Notions of isolation; 9.4 Neg-isolated types and elementary cogenerators; Chapter 10 Dimension and decomposition; 10.1 Existence of indecomposable direct summands; 10.2 Dimensions defined on lattices; 10.3 Modules with width
  • 10.4 Classification for theories with dimension10.5 Krull dimension; 10.T Teq; 10.6 Dimension and height; 10.V Valuation rings; Chapter 11 Modules over artinian rings; 11.1 Pure-semisimple rings; 11.2 Pure-semisimple rings and rings of finite representation type; 11.3 Finite hulls over artinian rings; 11.4 Finite Morley rank and finite representation type; 11.P Pathologies
  • Chapter 12 Functor categories; 12.1 Functors defined from pp formulas; 12.2 Simple functors; 12.3 Embedding into functor categories; 12.P Pure global dimension and dimensions of functor categories