Cargando…

Recursion theory : its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 /

Recursion theory - now a well-established branch of pure mathematics, having grown rapidly over the last 35 years - deals with the general (abstract) theory of those operations which we conceive as being `computable' by idealized machines. The theory grew out of, and is usually still regarded,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: Logic Colloquium Leeds, England
Otros Autores: Drake, F. R. (Frank Robert), Wainer, S. S.
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1980.
Colección:London Mathematical Society lecture note series ; 45.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn839304926
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130415s1980 enk ob 100 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCO  |d E7B  |d OCLCF  |d YDXCP  |d OCL  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d REC  |d STF  |d AU@  |d M8D  |d UKAHL  |d OCL  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 708565402  |a 1162496917  |a 1241805597  |a 1242484009 
020 |a 9781107360969  |q (electronic bk.) 
020 |a 110736096X  |q (electronic bk.) 
020 |a 9780511629181  |q (e-book) 
020 |a 0511629184  |q (e-book) 
020 |a 1139881558 
020 |a 9781139881555 
020 |a 1107365872 
020 |a 9781107365872 
020 |a 1107370604 
020 |a 9781107370609 
020 |a 1107368332 
020 |a 9781107368330 
020 |a 1299403689 
020 |a 9781299403680 
020 |a 1107363411 
020 |a 9781107363410 
020 |z 052123543X 
020 |z 9780521235433 
029 1 |a DEBBG  |b BV043069996 
029 1 |a DEBSZ  |b 421267429 
029 1 |a GBVCP  |b 804558469 
035 |a (OCoLC)839304926  |z (OCoLC)708565402  |z (OCoLC)1162496917  |z (OCoLC)1241805597  |z (OCoLC)1242484009 
050 4 |a QA9.6  |b .L63 1979eb 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a MAT  |x 018000  |2 bisacsh 
082 0 4 |a 511.3  |2 22 
049 |a UAMI 
111 2 |a Logic Colloquium  |d (1979 :  |c Leeds, England) 
245 1 0 |a Recursion theory :  |b its generalisations and applications : proceedings of Logic Colloquium '79, Leeds, August 1979 /  |c edited by F.R. Drake and S.S. Wainer. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1980. 
300 |a 1 online resource (319 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 45 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
520 |a Recursion theory - now a well-established branch of pure mathematics, having grown rapidly over the last 35 years - deals with the general (abstract) theory of those operations which we conceive as being `computable' by idealized machines. The theory grew out of, and is usually still regarded, as a branch of mathematical logic. This book is a collection of advanced research/survey papers by eminent research workers in the field, based on their lectures given at the Leeds Logic Colloquium 1979. As such it provides an up-to-date view of current ideas and developments in the field of recursion theory as a whole. The individual contributions fit together naturally so as to provide an overview of all the main areas of research in the field. It will therefore be an important and invaluable source for advanced researchers and research students in mathematics and computer science (particularly in Europe, USA and USSR). 
505 8 |a Degrees of Generic Sets1. INTRODUCTION; 2. PRELIMINARIES ON FORCING, GENERICITY, AND CATEGORY; 3. CONSEQUENCES OF CLASSICAL CONSTRUCTIONS; 4. MARTIN'S CATEGORY THEOREM; 5. RELATIVE RECURSIVE ENUMERABILITY OF I-GENERIC DEGREES; 6. CUPPING AND COMPLEMENTATION THEOREMS; 7. OPEN QUESTIONS; REFERENCES; The Degrees of Unsolvability: Some Recent Results; INTRODUCTION; 1. LOCAL STRUCTURE THEOREMS; 2. DECIDABILITY; 3. HOMOGENEITY; 4. AUTOMDRPHISMS; 5. DEFINABILITY; REFERENCES; GENERALISATIONS; Some Constructions in a-Recursion Theory; 1 PRELIMINARIES 
505 8 |a 2 a-FINITE INJURY PRIORITY ARGUMENTS AND THE SACKS SPLITTINGTHEOREM3. A CONE OF WELL ORDERED a-DEGREES; 4. MINIMAL PAIRS OF a-R.E. DEGREES; REFERENCES; The Recursion Theory of the Continuous Functionals; INTRODUCTION; BASIC DEFINITIONS AND RESULTS; THE MODULUS OF A SEQUENCE; COROLLARY (Normann-Wainer [18]); THE PROJECTIVE HIERARCHY; FINAL REMARKS; REFERENCES; Three Aspects of Recursive Enumerability in Higher Types; ABSTRACT; 1. INTRODUCTION; 2. MACHINERY; 3. INADMISSIBLE FORCING; 4. LIMITS OF RECURSIVE ENUMERABILITY; 5. COUNTABLE E-CLOSED ORDINALS; 6. POST'S PROBLEM 
505 8 |a 7. LOGIC ON E-CLOSED SETSREFERENCES; APPLICATIONS; Computing in Algebraic Systems; INTRODUCTION; 1. FINITE ALGORITHMIC PROCEDURES; 2. THE FAP-COMPUTABLE FUNCTIONS IN THE LARGE; 3. ALGEBRAIC INFLUENCES ON FAP-COMPUTATION; 4. LOCAL FAPCS-ENUMERATION, SEARCH AND PAIRING; 5. COUNTING AND STACKING: VARIETIES AND LOCAL FINITENESS; 6. TOPOLOGICAL ALGEBRAS; REFERENCES; Applications of Classical Recursion Theory to Computer Science; Introduction; Programming Tools; Complexity; Inductive Inference; Summary; Acknowledgements; References 
505 8 |a ""Natural"" Programming Languages and Complexity Measures for Subrecursive Programming Languages: An Abstract Approach1 INTRODUCTION; 2 SUBRECURSIVE PROGRAMMING LANGUAGES; 3 COMPLEXITY MEASURES; 4 SUBRECURSIVE COMPLEXITY: A BEGINNING; 5 RELATIONSHIPS BETWEEN THE COMPLEXITIES OF RELATED PROGRAMS; 6 A PROOF TECHNIQUE FOR SUBRECURSIVE COMPLEXITY; 7 OTHER SUBRECURSIVE COLLECTIONS OF FUNCTIONS J; 8 CONCLUSIONS AND QUESTIONS; 9 ACKNOWLEDGMENTS; REFERENCES; Complexity Theory with Emphasis on the Complexity of Logical Theories; LECTURE 1. BASIC COMPLEXITY THEORY 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Recursion theory  |v Congresses. 
650 6 |a Théorie de la récursivité  |v Congrès. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Logic.  |2 bisacsh 
650 7 |a Recursion theory  |2 fast 
655 7 |a Conference papers and proceedings  |2 fast 
700 1 |a Drake, F. R.  |q (Frank Robert) 
700 1 |a Wainer, S. S. 
776 0 8 |i Print version:  |a Logic Colloquium (1979 : Leeds, England).  |t Recursion theory.  |d Cambridge ; New York : Cambridge University Press, 1980  |z 052123543X  |w (DLC) 82180570  |w (OCoLC)502528916 
830 0 |a London Mathematical Society lecture note series ;  |v 45. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552383  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13428030 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385029 
938 |a ebrary  |b EBRY  |n ebr10444023 
938 |a EBSCOhost  |b EBSC  |n 552383 
938 |a YBP Library Services  |b YANK  |n 10370256 
938 |a YBP Library Services  |b YANK  |n 10407351 
994 |a 92  |b IZTAP