|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn839304847 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130415s1987 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d IDEBK
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d OCLCQ
|d UAB
|d JBG
|d VTS
|d REC
|d STF
|d M8D
|d INARC
|d SFB
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 715185630
|
020 |
|
|
|a 9781107361409
|q (electronic bk.)
|
020 |
|
|
|a 1107361400
|q (electronic bk.)
|
020 |
|
|
|a 9780511662256
|q (e-book)
|
020 |
|
|
|a 0511662254
|q (e-book)
|
020 |
|
|
|z 0521339960
|
020 |
|
|
|z 9780521339964
|
029 |
1 |
|
|a DEBBG
|b BV043069960
|
029 |
1 |
|
|a DEBSZ
|b 421266643
|
029 |
1 |
|
|a GBVCP
|b 80455787X
|
035 |
|
|
|a (OCoLC)839304847
|z (OCoLC)715185630
|
050 |
|
4 |
|a QA9.7
|b .D35 1987eb
|
072 |
|
7 |
|a MAT
|x 028000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.3/22
|2 22
|
084 |
|
|
|a 31.10
|2 bcl
|
084 |
|
|
|a *03E35
|2 msc
|
084 |
|
|
|a 03-01
|2 msc
|
084 |
|
|
|a 03E40
|2 msc
|
084 |
|
|
|a 03E50
|2 msc
|
084 |
|
|
|a 03E75
|2 msc
|
084 |
|
|
|a 46J10
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Dales, H. G.
|q (Harold G.),
|d 1944-
|
245 |
1 |
3 |
|a An introduction to independence for analysts /
|c H.G. Dales, W.H. Woodin.
|
260 |
|
|
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 1987.
|
300 |
|
|
|a 1 online resource (xiii, 241 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 115
|
504 |
|
|
|a Includes bibliographical references (pages 229-234).
|
500 |
|
|
|a Includes indexes.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Forcing is a powerful tool from logic which is used to prove that certain propositions of mathematics are independent of the basic axioms of set theory, ZFC. This book explains clearly, to non-logicians, the technique of forcing and its connection with independence, and gives a full proof that a naturally arising and deep question of analysis is independent of ZFC. It provides an accessible account of this result, and it includes a discussion, of Martin's Axiom and of the independence of CH.
|
505 |
0 |
|
|a Cover; Title; Copyright; Contents; Preface; 1 HOMOMORPHISMS FROM ALGEBRAS OF CONTINUOUS FUNCTIONS; 1.1 DEFINITION; 1.2 THEOREM; 1.3 THEOREM; 1.4 DEFINITION; 1.5 DEFINITION; 1.6 THEOREM; 1.7 COROLLARY; 1.8 THEOREM; 1.9 THEOREM (CH); 1.10 THEOREM (CH); 1.11 THEOREM (CH); 1.12 THEOREM (CH); 1.13 THEOREM; 1.14 NOTES; 2 PARTIAL ORDERS, BOOLEAN ALGEBRAS, AND ULTRAPRODUCTS; 2.1 DEFINITION; 2.2 EXAMPLES; 2.3 DEFINITION; 2.4 PROPOSITION; 2.5 DEFINITION; 2.6 DEFINITION; 2.7 EXAMPLE; 2.8 DEFINITION; 2.9 DEFINITION; 2.10 THEOREM; 2.11 DEFINITION; 2.12 DEFINITION; 2.13 LEMMA; 2.14 THEOREM; 2.15 COROLLARY
|
505 |
8 |
|
|a 2.16 EXAMPLE2.17 DEFINITION; 2.18 DEFINITION; 2.19 DEFINITION; 2.20 THEOREM; 2.21 THEOREM; 2.22 DEFINITION; 2i23 DEFINITION; 2.24 THEOREM; 2.25 NOTES; 3 WOODIN'S CONDITION; 3.1 DEFINITION; 3.2 THEOREM; 3.3 THEOREM; 3.4 PROPOSITION; 3.5 DEFINITION; 3.6 PROPOSITION; 3.7 PROPOSITION; 3.8 NOTES; 4 INDEPENDENCE IN SET THEORY; 4.1 DEFINITION; 4.2 DEFINITION; 4.3 DEFINITION; 4.4 DEFINITION; 4.5 DEFINITION; 4.6 DEFINITION; 4.7 DEFINITION; 4.8 THEOREM; 4.9 DEFINITION; 4.10 EXAMPLES; 4.11 DEFINITION; 4.12 DEFINITION; 4.13 DEFINITION; 4.14 DEFINITION; 4.15 EXAMPLE; 4.16 THEOREM; 4.17 THEOREM
|
505 |
8 |
|
|a 4.18 DEFINITION4.19 THEOREM; 4.20 NOTES; 5 MARTIN'S AXIOM; 5.1 DEFINITION; 5.2 DEFINITION; 5.3 DEFINITION; 5.4 PROPOSITION; 5.5 DEFINITION; 5.6 DEFINITION; 5.7 PROPOSITION; 5.8 DEFINITION; 5.9 PROPOSITION; 5.10 DEFINITION; 5.11 PROPOSITION (; 5.12 THEOREM; 5.13 DEFINITION; 5.14 DEFINITION; 5.15 DEFINITION; 5.16 LEMMA; 5.17 DEFINITION; 5.18 LEMMA; 5.19 LEMMA; prefilter in P, and hence, by 2.9(ii), H is a filter. I5.20 THEOREM; 5.21 DEFINITION; 5.22 THEOREM (MA); 5.23 DEFINITION; 5.24 THEOREM; 5.25 THEOREM (MA); 5.26 THEOREM (MA); 5.27 COROLLARY (MA); 5.28 COROLLARY; 5.29 THEOREM (MA)
|
505 |
8 |
|
|a 5.30 NOTES6 GAPS IN ORDERED SETS; 6.1 PROPOSITION; 6.2 COROLLARY; 6.2 DEFINITION; 6.4 DEFINITION; 6.5 DEFINITION; 6.6 PROPOSITION; 6.7 DEFINITION; 6.8 PROPOSITION; 6.9 THEOREM (MA + iCH); 6.10 DEFINITION; 6.11 DEFINITION; 6.12 THEOREM; 6.13 THEOREM; 6.14 COROLLARY (MA + *1CH); 6.15 THEOREM (MA); 6.16 THEOREM (MA); 6.17 DEFINITION; 6.18 PROPOSITION; 6.19 COROLLARY; 6.20 DEFINITION; 6.21 DEFINITION; 6.22 PROPOSITION; 6.23 PREPOSITION; 6.24 THEOREM (MA + nCH); 6.25 THEOREM (MA + iCH); 6.2 6 PROPOSITION; 6.27 COROLLARY; 6.28 COROLLARY (MA + nCH); 6.30 NOTES; 7 FORCING; 7.1 DEFINITION; 7.2 EXAMPLE
|
505 |
8 |
|
|a 7.3 DEFINITION7.4 PROPOSITION; 7.5 PROPOSITION; 7.6 DEFINITION; 7.7 DEFINITION; 7.8 PROPOSITION; 7.9 PROPOSITION; 7.10 LEMMA; 7.11 PROPOSITION; 7.12 THEOREM; 7.13 METATHEOREM; 7.14 EXAMPLE; 7.15 THEOREM; 7.16 PROPOSITION; 7.17 DEFINITION; 7.18 LEMMA; 7.19 LEMMA; 7.20 LEMMA; 7.21 LEMMA; 7.22 LEMMA; 7.23 DEFINITION; 7.24 EXAMPLE; 7.25 DEFINITION; 7.26 THEOREM; 7.27 THEOREM; 7.28 THEOREM; 7.29 COROLLARY (CH); 7.30 THEOREM; 7.31 DEFINITION; 7.32 PROPOSITION; 7.33 THEOREM; 7.34 THEOREM; 7.35 DEFINITION; 7.36 LEMMA; 7.37 THEOREM; 7.40 DEFINITION; 7.41 THEOREM; 7.42 NOTES; 8 ITERATED FORCING
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Forcing (Model theory)
|
650 |
|
0 |
|a Independence (Mathematics)
|
650 |
|
0 |
|a Axiomatic set theory.
|
650 |
|
6 |
|a Forcing (Théorie des modèles)
|
650 |
|
6 |
|a Indépendance (Mathématiques)
|
650 |
|
6 |
|a Théorie axiomatique des ensembles.
|
650 |
|
7 |
|a MATHEMATICS
|x Set Theory.
|2 bisacsh
|
650 |
|
7 |
|a Axiomatic set theory.
|2 fast
|0 (OCoLC)fst00824491
|
650 |
|
7 |
|a Forcing (Model theory)
|2 fast
|0 (OCoLC)fst00931616
|
650 |
|
7 |
|a Independence (Mathematics)
|2 fast
|0 (OCoLC)fst00968877
|
650 |
1 |
7 |
|a Verzamelingen (wiskunde)
|2 gtt
|
650 |
1 |
7 |
|a Modeltheorie.
|2 gtt
|
650 |
1 |
7 |
|a Logica.
|2 gtt
|
650 |
|
7 |
|a Forcing (théorie des modèles)
|2 ram
|
650 |
|
7 |
|a Ensembles, Théorie axiomatique des.
|2 ram
|
700 |
1 |
|
|a Woodin, W. H.
|q (W. Hugh)
|
776 |
0 |
8 |
|i Print version:
|a Dales, H.G. (Harold G.), 1944-
|t Introduction to independence for analysts.
|d Cambridge ; New York : Cambridge University Press, 1987
|z 0521339960
|w (DLC) 87021777
|w (OCoLC)16582061
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 115.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552459
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10455635
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552459
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154507
|
938 |
|
|
|a Internet Archive
|b INAR
|n introductiontoin0000dale
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10407394
|
994 |
|
|
|a 92
|b IZTAP
|