Cargando…

An introduction to independence for analysts /

Forcing is a powerful tool from logic which is used to prove that certain propositions of mathematics are independent of the basic axioms of set theory, ZFC. This book explains clearly, to non-logicians, the technique of forcing and its connection with independence, and gives a full proof that a nat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dales, H. G. (Harold G.), 1944-
Otros Autores: Woodin, W. H. (W. Hugh)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1987.
Colección:London Mathematical Society lecture note series ; 115.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn839304847
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130415s1987 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d IDEBK  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d UAB  |d JBG  |d VTS  |d REC  |d STF  |d M8D  |d INARC  |d SFB  |d OCLCO  |d OCLCQ 
019 |a 715185630 
020 |a 9781107361409  |q (electronic bk.) 
020 |a 1107361400  |q (electronic bk.) 
020 |a 9780511662256  |q (e-book) 
020 |a 0511662254  |q (e-book) 
020 |z 0521339960 
020 |z 9780521339964 
029 1 |a DEBBG  |b BV043069960 
029 1 |a DEBSZ  |b 421266643 
029 1 |a GBVCP  |b 80455787X 
035 |a (OCoLC)839304847  |z (OCoLC)715185630 
050 4 |a QA9.7  |b .D35 1987eb 
072 7 |a MAT  |x 028000  |2 bisacsh 
082 0 4 |a 511.3/22  |2 22 
084 |a 31.10  |2 bcl 
084 |a *03E35  |2 msc 
084 |a 03-01  |2 msc 
084 |a 03E40  |2 msc 
084 |a 03E50  |2 msc 
084 |a 03E75  |2 msc 
084 |a 46J10  |2 msc 
049 |a UAMI 
100 1 |a Dales, H. G.  |q (Harold G.),  |d 1944- 
245 1 3 |a An introduction to independence for analysts /  |c H.G. Dales, W.H. Woodin. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1987. 
300 |a 1 online resource (xiii, 241 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 115 
504 |a Includes bibliographical references (pages 229-234). 
500 |a Includes indexes. 
588 0 |a Print version record. 
520 |a Forcing is a powerful tool from logic which is used to prove that certain propositions of mathematics are independent of the basic axioms of set theory, ZFC. This book explains clearly, to non-logicians, the technique of forcing and its connection with independence, and gives a full proof that a naturally arising and deep question of analysis is independent of ZFC. It provides an accessible account of this result, and it includes a discussion, of Martin's Axiom and of the independence of CH. 
505 0 |a Cover; Title; Copyright; Contents; Preface; 1 HOMOMORPHISMS FROM ALGEBRAS OF CONTINUOUS FUNCTIONS; 1.1 DEFINITION; 1.2 THEOREM; 1.3 THEOREM; 1.4 DEFINITION; 1.5 DEFINITION; 1.6 THEOREM; 1.7 COROLLARY; 1.8 THEOREM; 1.9 THEOREM (CH); 1.10 THEOREM (CH); 1.11 THEOREM (CH); 1.12 THEOREM (CH); 1.13 THEOREM; 1.14 NOTES; 2 PARTIAL ORDERS, BOOLEAN ALGEBRAS, AND ULTRAPRODUCTS; 2.1 DEFINITION; 2.2 EXAMPLES; 2.3 DEFINITION; 2.4 PROPOSITION; 2.5 DEFINITION; 2.6 DEFINITION; 2.7 EXAMPLE; 2.8 DEFINITION; 2.9 DEFINITION; 2.10 THEOREM; 2.11 DEFINITION; 2.12 DEFINITION; 2.13 LEMMA; 2.14 THEOREM; 2.15 COROLLARY 
505 8 |a 2.16 EXAMPLE2.17 DEFINITION; 2.18 DEFINITION; 2.19 DEFINITION; 2.20 THEOREM; 2.21 THEOREM; 2.22 DEFINITION; 2i23 DEFINITION; 2.24 THEOREM; 2.25 NOTES; 3 WOODIN'S CONDITION; 3.1 DEFINITION; 3.2 THEOREM; 3.3 THEOREM; 3.4 PROPOSITION; 3.5 DEFINITION; 3.6 PROPOSITION; 3.7 PROPOSITION; 3.8 NOTES; 4 INDEPENDENCE IN SET THEORY; 4.1 DEFINITION; 4.2 DEFINITION; 4.3 DEFINITION; 4.4 DEFINITION; 4.5 DEFINITION; 4.6 DEFINITION; 4.7 DEFINITION; 4.8 THEOREM; 4.9 DEFINITION; 4.10 EXAMPLES; 4.11 DEFINITION; 4.12 DEFINITION; 4.13 DEFINITION; 4.14 DEFINITION; 4.15 EXAMPLE; 4.16 THEOREM; 4.17 THEOREM 
505 8 |a 4.18 DEFINITION4.19 THEOREM; 4.20 NOTES; 5 MARTIN'S AXIOM; 5.1 DEFINITION; 5.2 DEFINITION; 5.3 DEFINITION; 5.4 PROPOSITION; 5.5 DEFINITION; 5.6 DEFINITION; 5.7 PROPOSITION; 5.8 DEFINITION; 5.9 PROPOSITION; 5.10 DEFINITION; 5.11 PROPOSITION (; 5.12 THEOREM; 5.13 DEFINITION; 5.14 DEFINITION; 5.15 DEFINITION; 5.16 LEMMA; 5.17 DEFINITION; 5.18 LEMMA; 5.19 LEMMA; prefilter in P, and hence, by 2.9(ii), H is a filter. I5.20 THEOREM; 5.21 DEFINITION; 5.22 THEOREM (MA); 5.23 DEFINITION; 5.24 THEOREM; 5.25 THEOREM (MA); 5.26 THEOREM (MA); 5.27 COROLLARY (MA); 5.28 COROLLARY; 5.29 THEOREM (MA) 
505 8 |a 5.30 NOTES6 GAPS IN ORDERED SETS; 6.1 PROPOSITION; 6.2 COROLLARY; 6.2 DEFINITION; 6.4 DEFINITION; 6.5 DEFINITION; 6.6 PROPOSITION; 6.7 DEFINITION; 6.8 PROPOSITION; 6.9 THEOREM (MA + iCH); 6.10 DEFINITION; 6.11 DEFINITION; 6.12 THEOREM; 6.13 THEOREM; 6.14 COROLLARY (MA + *1CH); 6.15 THEOREM (MA); 6.16 THEOREM (MA); 6.17 DEFINITION; 6.18 PROPOSITION; 6.19 COROLLARY; 6.20 DEFINITION; 6.21 DEFINITION; 6.22 PROPOSITION; 6.23 PREPOSITION; 6.24 THEOREM (MA + nCH); 6.25 THEOREM (MA + iCH); 6.2 6 PROPOSITION; 6.27 COROLLARY; 6.28 COROLLARY (MA + nCH); 6.30 NOTES; 7 FORCING; 7.1 DEFINITION; 7.2 EXAMPLE 
505 8 |a 7.3 DEFINITION7.4 PROPOSITION; 7.5 PROPOSITION; 7.6 DEFINITION; 7.7 DEFINITION; 7.8 PROPOSITION; 7.9 PROPOSITION; 7.10 LEMMA; 7.11 PROPOSITION; 7.12 THEOREM; 7.13 METATHEOREM; 7.14 EXAMPLE; 7.15 THEOREM; 7.16 PROPOSITION; 7.17 DEFINITION; 7.18 LEMMA; 7.19 LEMMA; 7.20 LEMMA; 7.21 LEMMA; 7.22 LEMMA; 7.23 DEFINITION; 7.24 EXAMPLE; 7.25 DEFINITION; 7.26 THEOREM; 7.27 THEOREM; 7.28 THEOREM; 7.29 COROLLARY (CH); 7.30 THEOREM; 7.31 DEFINITION; 7.32 PROPOSITION; 7.33 THEOREM; 7.34 THEOREM; 7.35 DEFINITION; 7.36 LEMMA; 7.37 THEOREM; 7.40 DEFINITION; 7.41 THEOREM; 7.42 NOTES; 8 ITERATED FORCING 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Forcing (Model theory) 
650 0 |a Independence (Mathematics) 
650 0 |a Axiomatic set theory. 
650 6 |a Forcing (Théorie des modèles) 
650 6 |a Indépendance (Mathématiques) 
650 6 |a Théorie axiomatique des ensembles. 
650 7 |a MATHEMATICS  |x Set Theory.  |2 bisacsh 
650 7 |a Axiomatic set theory.  |2 fast  |0 (OCoLC)fst00824491 
650 7 |a Forcing (Model theory)  |2 fast  |0 (OCoLC)fst00931616 
650 7 |a Independence (Mathematics)  |2 fast  |0 (OCoLC)fst00968877 
650 1 7 |a Verzamelingen (wiskunde)  |2 gtt 
650 1 7 |a Modeltheorie.  |2 gtt 
650 1 7 |a Logica.  |2 gtt 
650 7 |a Forcing (théorie des modèles)  |2 ram 
650 7 |a Ensembles, Théorie axiomatique des.  |2 ram 
700 1 |a Woodin, W. H.  |q (W. Hugh) 
776 0 8 |i Print version:  |a Dales, H.G. (Harold G.), 1944-  |t Introduction to independence for analysts.  |d Cambridge ; New York : Cambridge University Press, 1987  |z 0521339960  |w (DLC) 87021777  |w (OCoLC)16582061 
830 0 |a London Mathematical Society lecture note series ;  |v 115. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552459  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10455635 
938 |a EBSCOhost  |b EBSC  |n 552459 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154507 
938 |a Internet Archive  |b INAR  |n introductiontoin0000dale 
938 |a YBP Library Services  |b YANK  |n 10407394 
994 |a 92  |b IZTAP