Cargando…

Combinatorial group theory : a topological approach /

In this book, developed from courses taught at the University of London, the author aims to show the value of using topological methods in combinatorial group theory. The topological material is given in terms of the fundamental groupoid, giving results and proofs that are both stronger and simpler...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cohen, Daniel E.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1989.
Colección:London Mathematical Society student texts ; 14.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn839304832
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130415s1989 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d CAMBR  |d IDEBK  |d OL$  |d DEBSZ  |d YDXCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d OCLCQ  |d HEBIS  |d OCLCO  |d UAB  |d OCLCQ  |d VTS  |d OCLCA  |d STF  |d AU@  |d OCLCO  |d M8D  |d OCLCQ  |d OCLCO  |d OCLCA  |d AJS  |d SFB  |d OCLCO  |d OCLCQ 
019 |a 726825869  |a 852208405 
020 |a 9781107361416  |q (electronic bk.) 
020 |a 1107361419  |q (electronic bk.) 
020 |a 9780511565878  |q (electronic bk.) 
020 |a 0511565879  |q (electronic bk.) 
020 |z 0521341337 
020 |z 9780521341332 
020 |z 0521349362 
020 |z 9780521349369 
029 1 |a DEBBG  |b BV043069879 
029 1 |a DEBSZ  |b 421266899 
029 1 |a GBVCP  |b 804557764 
035 |a (OCoLC)839304832  |z (OCoLC)726825869  |z (OCoLC)852208405 
050 4 |a QA171  |b .C672 1989eb 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512/.2  |2 22 
084 |a 31.21  |2 bcl 
084 |a 31.61  |2 bcl 
084 |a *20-02  |2 msc 
084 |a 20E06  |2 msc 
084 |a 20E07  |2 msc 
084 |a 20F05  |2 msc 
084 |a 20F10  |2 msc 
084 |a 55-02  |2 msc 
084 |a 57-02  |2 msc 
084 |a 57M05  |2 msc 
084 |a 57M10  |2 msc 
049 |a UAMI 
100 1 |a Cohen, Daniel E. 
245 1 0 |a Combinatorial group theory :  |b a topological approach /  |c Daniel E. Cohen. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1989. 
300 |a 1 online resource (310 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society student texts ;  |v 14 
504 |a Includes bibliographical references (pages 297-305) and index. 
588 0 |a Print version record. 
520 |a In this book, developed from courses taught at the University of London, the author aims to show the value of using topological methods in combinatorial group theory. The topological material is given in terms of the fundamental groupoid, giving results and proofs that are both stronger and simpler than the traditional ones. Several chapters deal with covering spaces and complexes, an important method, which is then applied to yield the major Schreier and Kurosh subgroup theorems. The author presents a full account of Bass-Serre theory and discusses the word problem, in particular, its unsolvability and the Higman Embedding Theorem. Included for completeness are the relevant results of computability theory. 
505 0 |a Cover; Title; Copyright; Introduction; Table of contents; CHAPTER 1. COMBINATORIAL GROUP THEORY; 1.1 Free groups; 1.2 Generators and relators; 1.3 Free products; 1.4 Pushouts and amalgamated free products; 1.5 HNN extensions; CHAPTER 2. SPACES AND THEIR PATHS; 2.1 Some point-set topology; 2.2 Paths and homotopies; CHAPTER 3. GROUPOIDS; 3.1 Groupoids; 3.2 Direct limits; CHAPTER 4. THE FUNDAMENTAL GROUPOID AND THE FUNDAMENTAL GROUP; 4.1 The fundamental groupoid and the fundamental group; 4.2 Van Kampen's theorem; 4.3 Covering spaces; 4.4 The circle and the complex plane 
505 8 |a 4.5 Joins and weak joinsCHAPTER 5. COMPLEXES; 5.1 Graphs; 5.2 Complexes and their fundamental groups; 5.3 Free groups and their automorphisms; 5.4 Coverings of complexes; 5.5 Subdivisions; 5.6 Geometric realisations; CHAPTER 6. COVERINGS OF SPACES AND COMPLEXES; CHAPTER 7. COVERINGS AND GROUP THEORY; CHAPTER 8. BASS-SERRE THEORY; 8.1 Trees and free groups; 8.2 Nielsen's method; 8.3 Graphs of groups; 8.4 The structure theorems; 8.5 Applications of the structure theorems; 8.6 Construction of trees; CHAPTER 9. DECISION PROBLEMS; 9.1 Decision problems in general 
505 8 |a 9.2 Some easy decision problems in groups9.3 The word problem; 9.4 Modular machines and unsolvabie word problems; 9.5 Some other unsolvabie problems; 9.6 Higman's embedding theorem; 9.7 Groups with one relator; CHAPTER 10. FURTHER TOPICS; 10.1 Small cancellation theory; 10.2 Other topics; NOTES AND REFERENCES; BIBLIOGRAPHY; INDEX 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Combinatorial group theory. 
650 0 |a Topology. 
650 6 |a Théorie combinatoire des groupes. 
650 6 |a Topologie. 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Combinatorial group theory.  |2 fast  |0 (OCoLC)fst00868974 
650 7 |a Topology.  |2 fast  |0 (OCoLC)fst01152692 
650 7 |a Mathematik  |2 gnd 
650 7 |a Kombinatorische Gruppentheorie  |2 gnd 
650 7 |a Topologie  |2 gnd 
650 7 |a Topologische Gruppe  |2 gnd 
650 7 |a Gruppentheorie  |2 gnd 
650 7 |a Groupes, Théorie combinatoire des.  |2 ram 
650 7 |a Topologie.  |2 ram 
776 0 8 |i Print version:  |a Cohen, Daniel E.  |t Combinatorial group theory.  |d Cambridge ; New York : Cambridge University Press, 1989  |z 0521341337  |w (DLC) 89205051  |w (OCoLC)20484295 
830 0 |a London Mathematical Society student texts ;  |v 14. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552435  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10459623 
938 |a EBSCOhost  |b EBSC  |n 552435 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154508 
938 |a YBP Library Services  |b YANK  |n 10407395 
994 |a 92  |b IZTAP