|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn839304832 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130415s1989 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d CAMBR
|d IDEBK
|d OL$
|d DEBSZ
|d YDXCP
|d OCLCQ
|d OCLCF
|d OCLCQ
|d AGLDB
|d OCLCQ
|d HEBIS
|d OCLCO
|d UAB
|d OCLCQ
|d VTS
|d OCLCA
|d STF
|d AU@
|d OCLCO
|d M8D
|d OCLCQ
|d OCLCO
|d OCLCA
|d AJS
|d SFB
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 726825869
|a 852208405
|
020 |
|
|
|a 9781107361416
|q (electronic bk.)
|
020 |
|
|
|a 1107361419
|q (electronic bk.)
|
020 |
|
|
|a 9780511565878
|q (electronic bk.)
|
020 |
|
|
|a 0511565879
|q (electronic bk.)
|
020 |
|
|
|z 0521341337
|
020 |
|
|
|z 9780521341332
|
020 |
|
|
|z 0521349362
|
020 |
|
|
|z 9780521349369
|
029 |
1 |
|
|a DEBBG
|b BV043069879
|
029 |
1 |
|
|a DEBSZ
|b 421266899
|
029 |
1 |
|
|a GBVCP
|b 804557764
|
035 |
|
|
|a (OCoLC)839304832
|z (OCoLC)726825869
|z (OCoLC)852208405
|
050 |
|
4 |
|a QA171
|b .C672 1989eb
|
072 |
|
7 |
|a MAT
|x 014000
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.2
|2 22
|
084 |
|
|
|a 31.21
|2 bcl
|
084 |
|
|
|a 31.61
|2 bcl
|
084 |
|
|
|a *20-02
|2 msc
|
084 |
|
|
|a 20E06
|2 msc
|
084 |
|
|
|a 20E07
|2 msc
|
084 |
|
|
|a 20F05
|2 msc
|
084 |
|
|
|a 20F10
|2 msc
|
084 |
|
|
|a 55-02
|2 msc
|
084 |
|
|
|a 57-02
|2 msc
|
084 |
|
|
|a 57M05
|2 msc
|
084 |
|
|
|a 57M10
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Cohen, Daniel E.
|
245 |
1 |
0 |
|a Combinatorial group theory :
|b a topological approach /
|c Daniel E. Cohen.
|
260 |
|
|
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 1989.
|
300 |
|
|
|a 1 online resource (310 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society student texts ;
|v 14
|
504 |
|
|
|a Includes bibliographical references (pages 297-305) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a In this book, developed from courses taught at the University of London, the author aims to show the value of using topological methods in combinatorial group theory. The topological material is given in terms of the fundamental groupoid, giving results and proofs that are both stronger and simpler than the traditional ones. Several chapters deal with covering spaces and complexes, an important method, which is then applied to yield the major Schreier and Kurosh subgroup theorems. The author presents a full account of Bass-Serre theory and discusses the word problem, in particular, its unsolvability and the Higman Embedding Theorem. Included for completeness are the relevant results of computability theory.
|
505 |
0 |
|
|a Cover; Title; Copyright; Introduction; Table of contents; CHAPTER 1. COMBINATORIAL GROUP THEORY; 1.1 Free groups; 1.2 Generators and relators; 1.3 Free products; 1.4 Pushouts and amalgamated free products; 1.5 HNN extensions; CHAPTER 2. SPACES AND THEIR PATHS; 2.1 Some point-set topology; 2.2 Paths and homotopies; CHAPTER 3. GROUPOIDS; 3.1 Groupoids; 3.2 Direct limits; CHAPTER 4. THE FUNDAMENTAL GROUPOID AND THE FUNDAMENTAL GROUP; 4.1 The fundamental groupoid and the fundamental group; 4.2 Van Kampen's theorem; 4.3 Covering spaces; 4.4 The circle and the complex plane
|
505 |
8 |
|
|a 4.5 Joins and weak joinsCHAPTER 5. COMPLEXES; 5.1 Graphs; 5.2 Complexes and their fundamental groups; 5.3 Free groups and their automorphisms; 5.4 Coverings of complexes; 5.5 Subdivisions; 5.6 Geometric realisations; CHAPTER 6. COVERINGS OF SPACES AND COMPLEXES; CHAPTER 7. COVERINGS AND GROUP THEORY; CHAPTER 8. BASS-SERRE THEORY; 8.1 Trees and free groups; 8.2 Nielsen's method; 8.3 Graphs of groups; 8.4 The structure theorems; 8.5 Applications of the structure theorems; 8.6 Construction of trees; CHAPTER 9. DECISION PROBLEMS; 9.1 Decision problems in general
|
505 |
8 |
|
|a 9.2 Some easy decision problems in groups9.3 The word problem; 9.4 Modular machines and unsolvabie word problems; 9.5 Some other unsolvabie problems; 9.6 Higman's embedding theorem; 9.7 Groups with one relator; CHAPTER 10. FURTHER TOPICS; 10.1 Small cancellation theory; 10.2 Other topics; NOTES AND REFERENCES; BIBLIOGRAPHY; INDEX
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Combinatorial group theory.
|
650 |
|
0 |
|a Topology.
|
650 |
|
6 |
|a Théorie combinatoire des groupes.
|
650 |
|
6 |
|a Topologie.
|
650 |
|
7 |
|a MATHEMATICS
|x Group Theory.
|2 bisacsh
|
650 |
|
7 |
|a Combinatorial group theory.
|2 fast
|0 (OCoLC)fst00868974
|
650 |
|
7 |
|a Topology.
|2 fast
|0 (OCoLC)fst01152692
|
650 |
|
7 |
|a Mathematik
|2 gnd
|
650 |
|
7 |
|a Kombinatorische Gruppentheorie
|2 gnd
|
650 |
|
7 |
|a Topologie
|2 gnd
|
650 |
|
7 |
|a Topologische Gruppe
|2 gnd
|
650 |
|
7 |
|a Gruppentheorie
|2 gnd
|
650 |
|
7 |
|a Groupes, Théorie combinatoire des.
|2 ram
|
650 |
|
7 |
|a Topologie.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Cohen, Daniel E.
|t Combinatorial group theory.
|d Cambridge ; New York : Cambridge University Press, 1989
|z 0521341337
|w (DLC) 89205051
|w (OCoLC)20484295
|
830 |
|
0 |
|a London Mathematical Society student texts ;
|v 14.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552435
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10459623
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552435
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154508
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10407395
|
994 |
|
|
|a 92
|b IZTAP
|