Cargando…

Lectures on the asymptotic theory of ideals /

In this book Professor Rees introduces and proves some of the main results of the asymptotic theory of ideals. The author's aim is to prove his Valuation Theorem, Strong Valuation Theorem, and Degree Formula, and to develop their consequences. The last part of the book is devoted to mixed multi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rees, D., 1918-2013
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1988.
Colección:London Mathematical Society lecture note series ; 113.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Half-title; Title; Copyright; Dedication; Contents; Preface; Introduction; Graded Rings and Modules; 1. Definitions and Samuel's theorem.; 2. Rappel on Koszul complexes.; 3. Additive functions on modules.; 4. The Hilbert series of a graded module.; Filtrations and Noether Filtrations; 1. Generalities on nitrations.; 2. Integer-valued nitrations.; 3. Noether nitrations.; 4. Miscellaneous results.; The Theorems of Matijevic and Mori-Nagata; 1. Matijevic's Theorem.; 2. The Mori-Nagata Theorem.; The Valuation Theorem; 1. The Valuation Theorem.; 2. Miscellaneous results.
  • The Strong Valuation Theorem1. Preliminaries.; 2. Completions, the Cohen Structure Theorems, and Nagata's Theorem.; 3. The Strong Valuation Theorem.; 4. A criterion for analytic unramification.; Ideal Valuations (1); 1. Introduction.; 2. The ideal valuations of a local domain.; Ideal Valuations (2); 1. Introduction.; 2. Ideal valuations of finitely generated extensions.; 3. Applications.; 4. More on the rings Qn.; The Multiplicity Function associated with a Filtration; 1. Filtrations on a module.; 2. The multiplicity function of m-primary filtrations.
  • The Degree Function of a Noether Filtration1. Definition and elementary properties.; 2. The degree formula: generalities.; 3. The degree formula: preliminary form.; 4. The degree formula: final version.; The General Extension of a Local Ring; 1. Introduction.; 2. Prime ideals of Qg.; 3. Valuations on general extensions.; General Elements; 1. Introduction.; 2. The ideal generated by a set of general elements.; 3. Some invariants of sets of ideals of a local ring.; Generalised Degree Formula; 1. Multiplicities again.; 2. Mixed multiplicities.; 3. The generalised degree formula.
  • 4. A final illustration. Bibliography; Index; Index of Symbols