Cargando…

Lectures on the asymptotic theory of ideals /

In this book Professor Rees introduces and proves some of the main results of the asymptotic theory of ideals. The author's aim is to prove his Valuation Theorem, Strong Valuation Theorem, and Degree Formula, and to develop their consequences. The last part of the book is devoted to mixed multi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rees, D., 1918-2013
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1988.
Colección:London Mathematical Society lecture note series ; 113.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn839304522
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130415s1988 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCA  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d REC  |d STF  |d M8D  |d INARC  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 708565654 
020 |a 9781107361256  |q (electronic bk.) 
020 |a 1107361257  |q (electronic bk.) 
020 |a 9780511525957  |q (e-book) 
020 |a 0511525958  |q (e-book) 
020 |z 0521311276 
020 |z 9780521311274 
029 1 |a DEBBG  |b BV043070456 
029 1 |a DEBSZ  |b 421267356 
029 1 |a GBVCP  |b 804556369 
035 |a (OCoLC)839304522  |z (OCoLC)708565654 
050 4 |a QA247  |b .R39 1988eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.4  |2 22 
084 |a *13A15  |2 msc 
084 |a 13-02  |2 msc 
084 |a 13E05  |2 msc 
049 |a UAMI 
100 1 |a Rees, D.,  |d 1918-2013. 
245 1 0 |a Lectures on the asymptotic theory of ideals /  |c D. Rees. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1988. 
300 |a 1 online resource (201 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 113 
504 |a Includes bibliographical references (pages 195-198). 
500 |a Includes indexes. 
588 0 |a Print version record. 
520 |a In this book Professor Rees introduces and proves some of the main results of the asymptotic theory of ideals. The author's aim is to prove his Valuation Theorem, Strong Valuation Theorem, and Degree Formula, and to develop their consequences. The last part of the book is devoted to mixed multiplicities. Here the author develops his theory of general elements of ideals and gives a proof of a generalised degree formula. The reader is assumed to be familiar with basic commutative algebra, as covered in the standard texts, but the presentation is suitable for advanced graduate students. The work is an expansion of lectures given at Nagoya University. 
505 0 |a Cover; Half-title; Title; Copyright; Dedication; Contents; Preface; Introduction; Graded Rings and Modules; 1. Definitions and Samuel's theorem.; 2. Rappel on Koszul complexes.; 3. Additive functions on modules.; 4. The Hilbert series of a graded module.; Filtrations and Noether Filtrations; 1. Generalities on nitrations.; 2. Integer-valued nitrations.; 3. Noether nitrations.; 4. Miscellaneous results.; The Theorems of Matijevic and Mori-Nagata; 1. Matijevic's Theorem.; 2. The Mori-Nagata Theorem.; The Valuation Theorem; 1. The Valuation Theorem.; 2. Miscellaneous results. 
505 8 |a The Strong Valuation Theorem1. Preliminaries.; 2. Completions, the Cohen Structure Theorems, and Nagata's Theorem.; 3. The Strong Valuation Theorem.; 4. A criterion for analytic unramification.; Ideal Valuations (1); 1. Introduction.; 2. The ideal valuations of a local domain.; Ideal Valuations (2); 1. Introduction.; 2. Ideal valuations of finitely generated extensions.; 3. Applications.; 4. More on the rings Qn.; The Multiplicity Function associated with a Filtration; 1. Filtrations on a module.; 2. The multiplicity function of m-primary filtrations. 
505 8 |a The Degree Function of a Noether Filtration1. Definition and elementary properties.; 2. The degree formula: generalities.; 3. The degree formula: preliminary form.; 4. The degree formula: final version.; The General Extension of a Local Ring; 1. Introduction.; 2. Prime ideals of Qg.; 3. Valuations on general extensions.; General Elements; 1. Introduction.; 2. The ideal generated by a set of general elements.; 3. Some invariants of sets of ideals of a local ring.; Generalised Degree Formula; 1. Multiplicities again.; 2. Mixed multiplicities.; 3. The generalised degree formula. 
505 8 |a 4. A final illustration. Bibliography; Index; Index of Symbols 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Ideals (Algebra)  |x Asymptotic theory. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Ideals (Algebra)  |x Asymptotic theory  |2 fast 
650 7 |a Anéis e álgebras comutativos.  |2 larpcal 
650 7 |a Idéaux (algèbre)  |x Théorie asymptotique.  |2 ram 
776 0 8 |i Print version:  |a Rees, D., 1918-  |t Lectures on the asymptotic theory of ideals.  |d Cambridge ; New York : Cambridge University Press, 1988  |z 0521311276  |w (DLC) 87035804  |w (OCoLC)17300681 
830 0 |a London Mathematical Society lecture note series ;  |v 113. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552390  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10444127 
938 |a EBSCOhost  |b EBSC  |n 552390 
938 |a Internet Archive  |b INAR  |n lecturesonasympt0000rees 
938 |a YBP Library Services  |b YANK  |n 10407380 
994 |a 92  |b IZTAP