|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn839303262 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130415s1972 enk ob 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d IDEBK
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d OCLCQ
|d OCLCO
|d UAB
|d OCLCQ
|d VTS
|d REC
|d OCLCO
|d STF
|d AU@
|d OCLCO
|d M8D
|d SFB
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 726827085
|
020 |
|
|
|a 9781107360778
|q (electronic bk.)
|
020 |
|
|
|a 1107360773
|q (electronic bk.)
|
020 |
|
|
|a 9780511662584
|q (e-book)
|
020 |
|
|
|a 0511662580
|q (e-book)
|
020 |
|
|
|z 0521080762
|
020 |
|
|
|z 9780521080767
|
029 |
1 |
|
|a DEBBG
|b BV043066574
|
029 |
1 |
|
|a DEBSZ
|b 421265787
|
029 |
1 |
|
|a GBVCP
|b 80455448X
|
035 |
|
|
|a (OCoLC)839303262
|z (OCoLC)726827085
|
050 |
|
4 |
|a QA612
|b .A3 1972eb
|
072 |
|
7 |
|a MAT
|x 038000
|2 bisacsh
|
082 |
0 |
4 |
|a 514/.2
|2 22
|
084 |
|
|
|a 31.61
|2 bcl
|
084 |
|
|
|a SI 320
|2 rvk
|
084 |
|
|
|a SK 300
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Adams, J. Frank
|q (John Frank)
|
245 |
1 |
0 |
|a Algebraic topology :
|b a student's guide /
|c J.F. Adams.
|
260 |
|
|
|a Cambridge [England] :
|b University Press,
|c 1972.
|
300 |
|
|
|a 1 online resource (vi, 300 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society. Lecture note series ;
|v 4
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This set of notes, for graduate students who are specializing in algebraic topology, adopts a novel approach to the teaching of the subject. It begins with a survey of the most beneficial areas for study, with recommendations regarding the best written accounts of each topic. Because a number of the sources are rather inaccessible to students, the second part of the book comprises a collection of some of these classic expositions, from journals, lecture notes, theses and conference proceedings. They are connected by short explanatory passages written by Professor Adams, whose own contributions to this branch of mathematics are represented in the reprinted articles.
|
505 |
0 |
|
|a Cover; Title; Copyright; Contents; Introduction; 1 A first course; 2 Categories and functors; 3 Semi-simplicial complexes; 4 Ordinary homology and cohomology; 5 Spectral sequences; 6 H*(BG); 7 Eilenberg-MacLane spaces and the Steenrod algebra; 8 Serrefs theory of classes of abelian groups (C-theory); 9 Obstruction theory; 10 Homotopy theory; 11 Fibre bundles and topology of groups; 12 Generalised cohomology theories; 13 Final touches; PAPERS ON ALGEBRAIC TOPOLOGY; 1; 1COMBINATORIAL HOMOTOPY; 4. Cell complexes.; 5. CW-complexes, ; REFERENCES; 2; 2 AXIOMATIC APPROACH TO HOMOLOGY THEORY
|
505 |
8 |
|
|a 1. Introduction2. Preliminaries; 3. Basic Concepts; 4. Axioms; 6. Existence; 7. Generalizations; 3 3 LA SUITE SPECTRALE. I: CONSTRUCTION GENERALE; 1. Fondations; 2. Les suite f ondamentales; 3. Le cas gradue; 4. Le cas contravariant; 5. Le cas algebrique; 4 EXACT COUPLES IN ALGEBRAIC TOPOLOGY; Introduction; 1. Differential Groups; 2. Graded and Bigraded Groups; 3. Definition of a Leray-Koszul Sequence; 4. Definition of an Exact Couple; The Derived Couple; 5. Maps of Exact Couples; 6. Bigraded Exact Couples; The Associated Leray-Koszul Sequence; BIBLIOGRAPHY; 5
|
505 |
8 |
|
|a 5 THE COHOMOLOGY OF CLASSIFYING SPACES OF tf-SPACES6; 6 Cohomologie modulo 2 des complexes d'Eilenberg-MacLane; Introduction; 1. PrGlirninaires; 2. Determination de Palgfcbre #*(77; q, Z2); 4. Operations cohomologiques; BIBLIOGRAPHIE; 7; 7 ON THE TRIAD CONNECTIVITY THEOREM; 8 8 ON THE FREUDENTHAL THEOREMS; 1. Introduction; BIBLIOGRAPHY; 9 THE SUSPENSION TRIAD OF A SPHERE; 1. Introduction; BIBLIOGRAPHY; 10; 10 ON THE CONSTRUCTION FK; 1. Introduction; 2. The construction; 3. A theorem of Hilton; References; 11; 11ON CHERN CHARACTERS AND THE STRUCTURE OF THEUNITARY GROUP; 12; 13
|
505 |
8 |
|
|a 2. The spectral sequence. 3. The differentiable Riemann-Roch theorem and some applications.; 4. The classifying space of a compact connected Lie group.; REFERENCES; 20 LECTURES ON K-THEORY; 1. Vector bundles on X and vector bundles on X x S; 2. Definition of K(X); 3. Proof of Bott periodicity; 4. Elements of Hopf invariant one; 21 VECTOR FIELDS ON SPHERES; 22 ON THE GROUPS J(X)-IV; 1. INTRODUCTION; 2. COF1BERINGS; 3. DEFINITION AND ELEMENTARY PROPERTIES OF THE INVARIANTS d, e; 12. EXAMPLES; REFERENCES; 23; 23A SUMMARY ON COMPLEX COBORDISM; 24
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Algebraic topology.
|
650 |
|
6 |
|a Topologie algébrique.
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
|
7 |
|a Algebraic topology
|2 fast
|
650 |
|
7 |
|a Algebraische Topologie
|2 gnd
|
650 |
1 |
7 |
|a Algebraïsche topologie.
|2 gtt
|
650 |
|
7 |
|a Topologie algébrique.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Adams, J. Frank (John Frank).
|t Algebraic topology.
|d Cambridge [Eng.] University Press, 1972
|z 0521080762
|w (DLC) 75163178
|w (OCoLC)277728
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 4.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552656
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10461249
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552656
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154449
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10407333
|
994 |
|
|
|a 92
|b IZTAP
|