Cargando…

Isolated singular points on complete intersections /

Singularity theory is not a field in itself, but rather an application of algebraic geometry, analytic geometry and differential analysis. The adjective 'singular' in the title refers here to singular points of complex-analytic or algebraic varieties or mappings. A tractable (and very natu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Looijenga, E. (Eduard), 1948-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1984.
Colección:London Mathematical Society lecture note series ; 77.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title; Copyright; Dedication; Contents; INTRODUCTION; CHAPTER 1 : EXAMPLES OF ISOLATED SINGULAR POINTS; A. Hypersurface singularities; B. Complete intersections; C. Quotient singularities; D. Quasi-conical singularities; E. Cusp singularities; CHAPTER 2: THE MILNOR FI BRAT I ON; A. The link of an isolated singularity; B. Good representatives; C. Geometric monodromy; D. Excellent representatives; CHAPTER 3: PICARD-LEFSCHETZ FORMULAS; A. Monodromy of a quadratic singularity (local case); B. Monodromy of a quadratic singularity (global case)
  • CHAPTER 4: CRITICAL SPACE AND DISCRIMINANT SPACEA. The critical space; B. The Thorn singularity manifolds; C. Development of the discriminant locus; D. Fitting ideals; E. The discriminant space; CHAPTER 5: RELATIVE MONODROMY; A. The basic construction; B. The homotopy type of the Mil nor fibre; C. The monodromy theorem; CHAPTER 6: DEFORMATIONS; A. Relative differentials; B. The Kodaira-Spencer map; C. Versal deformations; D. Some analytic properties of versal deformations; CHAPTER 7: VANISHING LATTICES, M0N0DR0MY GROUPS AND ADJACENCY; A. The fundamental group of a hypersurface complement
  • B. The monodromy goupC. Adjacency; D.A partial classification; CHAPTER 8: THE LOCAL GAUSS-MAN IN CONNECTION; A. De Rham cohomology of good representatives; B. The Gauss-Manin connection; C. The complete intersection case; CHAPTER 9: APPLICATIONS OF THE LOCAL GAUSS-MANIN CONNECTION; A. Milnor number and Tjurina number; B. Singularities with good C*-action; C.A period mapping; REFERENCES; INDEX OF NOTATIONS; SUBJECT INDEX