Isolated singular points on complete intersections /
Singularity theory is not a field in itself, but rather an application of algebraic geometry, analytic geometry and differential analysis. The adjective 'singular' in the title refers here to singular points of complex-analytic or algebraic varieties or mappings. A tractable (and very natu...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge [Cambridgeshire] ; New York :
Cambridge University Press,
1984.
|
Colección: | London Mathematical Society lecture note series ;
77. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title; Copyright; Dedication; Contents; INTRODUCTION; CHAPTER 1 : EXAMPLES OF ISOLATED SINGULAR POINTS; A. Hypersurface singularities; B. Complete intersections; C. Quotient singularities; D. Quasi-conical singularities; E. Cusp singularities; CHAPTER 2: THE MILNOR FI BRAT I ON; A. The link of an isolated singularity; B. Good representatives; C. Geometric monodromy; D. Excellent representatives; CHAPTER 3: PICARD-LEFSCHETZ FORMULAS; A. Monodromy of a quadratic singularity (local case); B. Monodromy of a quadratic singularity (global case)
- CHAPTER 4: CRITICAL SPACE AND DISCRIMINANT SPACEA. The critical space; B. The Thorn singularity manifolds; C. Development of the discriminant locus; D. Fitting ideals; E. The discriminant space; CHAPTER 5: RELATIVE MONODROMY; A. The basic construction; B. The homotopy type of the Mil nor fibre; C. The monodromy theorem; CHAPTER 6: DEFORMATIONS; A. Relative differentials; B. The Kodaira-Spencer map; C. Versal deformations; D. Some analytic properties of versal deformations; CHAPTER 7: VANISHING LATTICES, M0N0DR0MY GROUPS AND ADJACENCY; A. The fundamental group of a hypersurface complement
- B. The monodromy goupC. Adjacency; D.A partial classification; CHAPTER 8: THE LOCAL GAUSS-MAN IN CONNECTION; A. De Rham cohomology of good representatives; B. The Gauss-Manin connection; C. The complete intersection case; CHAPTER 9: APPLICATIONS OF THE LOCAL GAUSS-MANIN CONNECTION; A. Milnor number and Tjurina number; B. Singularities with good C*-action; C.A period mapping; REFERENCES; INDEX OF NOTATIONS; SUBJECT INDEX