Cargando…

Isolated singular points on complete intersections /

Singularity theory is not a field in itself, but rather an application of algebraic geometry, analytic geometry and differential analysis. The adjective 'singular' in the title refers here to singular points of complex-analytic or algebraic varieties or mappings. A tractable (and very natu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Looijenga, E. (Eduard), 1948-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1984.
Colección:London Mathematical Society lecture note series ; 77.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn839303199
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130415s1984 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d IDEBK  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d COO  |d VTS  |d REC  |d STF  |d M8D  |d OCLCO  |d AJS  |d OCLCO  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 732957820 
020 |a 9781107361188  |q (electronic bk.) 
020 |a 1107361184  |q (electronic bk.) 
020 |a 9780511662720  |q (e-book) 
020 |a 0511662726  |q (e-book) 
020 |z 0521286743 
020 |z 9780521286749 
029 1 |a DEBBG  |b BV043066892 
029 1 |a DEBSZ  |b 421266163 
029 1 |a GBVCP  |b 804553785 
035 |a (OCoLC)839303199  |z (OCoLC)732957820 
050 4 |a QA564  |b .L66 1984eb 
072 7 |a MAT  |x 012010  |2 bisacsh 
082 0 4 |a 516.3/5  |2 22 
084 |a 31.43  |2 bcl 
084 |a 31.51  |2 bcl 
084 |a SI 320  |2 rvk 
084 |a SK 240  |2 rvk 
084 |a MAT 320f  |2 stub 
049 |a UAMI 
100 1 |a Looijenga, E.  |q (Eduard),  |d 1948- 
245 1 0 |a Isolated singular points on complete intersections /  |c E.J.N. Looijenga. 
260 |a Cambridge [Cambridgeshire] ;  |a New York :  |b Cambridge University Press,  |c 1984. 
300 |a 1 online resource (xi, 200 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 77 
504 |a Includes bibliographical references (pages 187-195). 
500 |a Includes indexes. 
588 0 |a Print version record. 
520 |a Singularity theory is not a field in itself, but rather an application of algebraic geometry, analytic geometry and differential analysis. The adjective 'singular' in the title refers here to singular points of complex-analytic or algebraic varieties or mappings. A tractable (and very natural) class of singularities to study are the isolated complete intersection singularities, and much progress has been made over the past decade in understanding these and their deformations. 
505 0 |a Cover; Title; Copyright; Dedication; Contents; INTRODUCTION; CHAPTER 1 : EXAMPLES OF ISOLATED SINGULAR POINTS; A. Hypersurface singularities; B. Complete intersections; C. Quotient singularities; D. Quasi-conical singularities; E. Cusp singularities; CHAPTER 2: THE MILNOR FI BRAT I ON; A. The link of an isolated singularity; B. Good representatives; C. Geometric monodromy; D. Excellent representatives; CHAPTER 3: PICARD-LEFSCHETZ FORMULAS; A. Monodromy of a quadratic singularity (local case); B. Monodromy of a quadratic singularity (global case) 
505 8 |a CHAPTER 4: CRITICAL SPACE AND DISCRIMINANT SPACEA. The critical space; B. The Thorn singularity manifolds; C. Development of the discriminant locus; D. Fitting ideals; E. The discriminant space; CHAPTER 5: RELATIVE MONODROMY; A. The basic construction; B. The homotopy type of the Mil nor fibre; C. The monodromy theorem; CHAPTER 6: DEFORMATIONS; A. Relative differentials; B. The Kodaira-Spencer map; C. Versal deformations; D. Some analytic properties of versal deformations; CHAPTER 7: VANISHING LATTICES, M0N0DR0MY GROUPS AND ADJACENCY; A. The fundamental group of a hypersurface complement 
505 8 |a B. The monodromy goupC. Adjacency; D.A partial classification; CHAPTER 8: THE LOCAL GAUSS-MAN IN CONNECTION; A. De Rham cohomology of good representatives; B. The Gauss-Manin connection; C. The complete intersection case; CHAPTER 9: APPLICATIONS OF THE LOCAL GAUSS-MANIN CONNECTION; A. Milnor number and Tjurina number; B. Singularities with good C*-action; C.A period mapping; REFERENCES; INDEX OF NOTATIONS; SUBJECT INDEX 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Geometry, Algebraic. 
650 0 |a Singularities (Mathematics) 
650 6 |a Géométrie algébrique. 
650 6 |a Singularités (Mathématiques) 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Singularities (Mathematics)  |2 fast 
650 7 |a Isolierte Singularität  |2 gnd 
650 7 |a Vollständiger Durchschnitt  |2 gnd 
650 7 |a Algebraische Geometrie  |2 gnd 
650 7 |a Géométrie algébrique.  |2 ram 
650 7 |a Singularités (mathématiques)  |2 ram 
776 0 8 |i Print version:  |a Looijenga, E. (Eduard), 1948-  |t Isolated singular points on complete intersections.  |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1984  |z 0521286743  |w (DLC) 82009707  |w (OCoLC)8588230 
830 0 |a London Mathematical Society lecture note series ;  |v 77. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552508  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10468828 
938 |a EBSCOhost  |b EBSC  |n 552508 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154486 
938 |a YBP Library Services  |b YANK  |n 10407373 
994 |a 92  |b IZTAP