|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn839303199 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130415s1984 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d IDEBK
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d OCLCQ
|d COO
|d VTS
|d REC
|d STF
|d M8D
|d OCLCO
|d AJS
|d OCLCO
|d SFB
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 732957820
|
020 |
|
|
|a 9781107361188
|q (electronic bk.)
|
020 |
|
|
|a 1107361184
|q (electronic bk.)
|
020 |
|
|
|a 9780511662720
|q (e-book)
|
020 |
|
|
|a 0511662726
|q (e-book)
|
020 |
|
|
|z 0521286743
|
020 |
|
|
|z 9780521286749
|
029 |
1 |
|
|a DEBBG
|b BV043066892
|
029 |
1 |
|
|a DEBSZ
|b 421266163
|
029 |
1 |
|
|a GBVCP
|b 804553785
|
035 |
|
|
|a (OCoLC)839303199
|z (OCoLC)732957820
|
050 |
|
4 |
|a QA564
|b .L66 1984eb
|
072 |
|
7 |
|a MAT
|x 012010
|2 bisacsh
|
082 |
0 |
4 |
|a 516.3/5
|2 22
|
084 |
|
|
|a 31.43
|2 bcl
|
084 |
|
|
|a 31.51
|2 bcl
|
084 |
|
|
|a SI 320
|2 rvk
|
084 |
|
|
|a SK 240
|2 rvk
|
084 |
|
|
|a MAT 320f
|2 stub
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Looijenga, E.
|q (Eduard),
|d 1948-
|
245 |
1 |
0 |
|a Isolated singular points on complete intersections /
|c E.J.N. Looijenga.
|
260 |
|
|
|a Cambridge [Cambridgeshire] ;
|a New York :
|b Cambridge University Press,
|c 1984.
|
300 |
|
|
|a 1 online resource (xi, 200 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 77
|
504 |
|
|
|a Includes bibliographical references (pages 187-195).
|
500 |
|
|
|a Includes indexes.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Singularity theory is not a field in itself, but rather an application of algebraic geometry, analytic geometry and differential analysis. The adjective 'singular' in the title refers here to singular points of complex-analytic or algebraic varieties or mappings. A tractable (and very natural) class of singularities to study are the isolated complete intersection singularities, and much progress has been made over the past decade in understanding these and their deformations.
|
505 |
0 |
|
|a Cover; Title; Copyright; Dedication; Contents; INTRODUCTION; CHAPTER 1 : EXAMPLES OF ISOLATED SINGULAR POINTS; A. Hypersurface singularities; B. Complete intersections; C. Quotient singularities; D. Quasi-conical singularities; E. Cusp singularities; CHAPTER 2: THE MILNOR FI BRAT I ON; A. The link of an isolated singularity; B. Good representatives; C. Geometric monodromy; D. Excellent representatives; CHAPTER 3: PICARD-LEFSCHETZ FORMULAS; A. Monodromy of a quadratic singularity (local case); B. Monodromy of a quadratic singularity (global case)
|
505 |
8 |
|
|a CHAPTER 4: CRITICAL SPACE AND DISCRIMINANT SPACEA. The critical space; B. The Thorn singularity manifolds; C. Development of the discriminant locus; D. Fitting ideals; E. The discriminant space; CHAPTER 5: RELATIVE MONODROMY; A. The basic construction; B. The homotopy type of the Mil nor fibre; C. The monodromy theorem; CHAPTER 6: DEFORMATIONS; A. Relative differentials; B. The Kodaira-Spencer map; C. Versal deformations; D. Some analytic properties of versal deformations; CHAPTER 7: VANISHING LATTICES, M0N0DR0MY GROUPS AND ADJACENCY; A. The fundamental group of a hypersurface complement
|
505 |
8 |
|
|a B. The monodromy goupC. Adjacency; D.A partial classification; CHAPTER 8: THE LOCAL GAUSS-MAN IN CONNECTION; A. De Rham cohomology of good representatives; B. The Gauss-Manin connection; C. The complete intersection case; CHAPTER 9: APPLICATIONS OF THE LOCAL GAUSS-MANIN CONNECTION; A. Milnor number and Tjurina number; B. Singularities with good C*-action; C.A period mapping; REFERENCES; INDEX OF NOTATIONS; SUBJECT INDEX
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
0 |
|a Singularities (Mathematics)
|
650 |
|
6 |
|a Géométrie algébrique.
|
650 |
|
6 |
|a Singularités (Mathématiques)
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Algebraic.
|2 bisacsh
|
650 |
|
7 |
|a Geometry, Algebraic
|2 fast
|
650 |
|
7 |
|a Singularities (Mathematics)
|2 fast
|
650 |
|
7 |
|a Isolierte Singularität
|2 gnd
|
650 |
|
7 |
|a Vollständiger Durchschnitt
|2 gnd
|
650 |
|
7 |
|a Algebraische Geometrie
|2 gnd
|
650 |
|
7 |
|a Géométrie algébrique.
|2 ram
|
650 |
|
7 |
|a Singularités (mathématiques)
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Looijenga, E. (Eduard), 1948-
|t Isolated singular points on complete intersections.
|d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1984
|z 0521286743
|w (DLC) 82009707
|w (OCoLC)8588230
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 77.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552508
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10468828
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552508
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154486
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10407373
|
994 |
|
|
|a 92
|b IZTAP
|