Cargando…

Symmetric designs : an algebraic approach /

Symmetric designs are an important class of combinatorial structures which arose first in the statistics and are now especially important in the study of finite geometries. This book presents some of the algebraic techniques that have been brought to bear on the question of existence, construction a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lander, Eric S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1983.
Colección:London Mathematical Society lecture note series ; 74.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn839302806
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130415s1983 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d IDEBK  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d UAB  |d VTS  |d REC  |d STF  |d M8D  |d OCLCO  |d OCLCA  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 715185715 
020 |a 9781107361195  |q (electronic bk.) 
020 |a 1107361192  |q (electronic bk.) 
020 |a 9780511662164  |q (e-book) 
020 |a 0511662165  |q (e-book) 
020 |z 052128693X 
020 |z 9780521286930 
029 1 |a DEBBG  |b BV043067406 
029 1 |a DEBSZ  |b 421266694 
029 1 |a GBVCP  |b 804553432 
035 |a (OCoLC)839302806  |z (OCoLC)715185715 
050 4 |a QA166.25  |b .L36 1983eb 
072 7 |a MAT  |x 036000  |2 bisacsh 
082 0 4 |a 511/.6  |2 22 
084 |a SI 320  |2 rvk 
084 |a SK 170  |2 rvk 
084 |a SK 260  |2 rvk 
049 |a UAMI 
100 1 |a Lander, Eric S. 
245 1 0 |a Symmetric designs :  |b an algebraic approach /  |c Eric S. Lander. 
260 |a Cambridge [Cambridgeshire] ;  |a New York :  |b Cambridge University Press,  |c 1983. 
300 |a 1 online resource (xii, 306 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 74 
504 |a Includes bibliographical references (pages 294-303) and index. 
588 0 |a Print version record. 
520 |a Symmetric designs are an important class of combinatorial structures which arose first in the statistics and are now especially important in the study of finite geometries. This book presents some of the algebraic techniques that have been brought to bear on the question of existence, construction and symmetry of symmetric designs - including methods inspired by the algebraic theory of coding and by the representation theory of finite groups - and includes many results. Rich in examples and containing over 100 problems, the text also provides an introduction to many of the modern algebraic approaches used, through six lengthy appendices and supplementary problems. The book will be of interest to both combinatorialists and algebraists, and could be used as a course text for a graduate course. 
505 0 |a Cover; Title; Copyright; Dedication; Contents; Preface; CHAPTER 1. SYMMETRIC DESIGNS; 1.1 Definitions and simple examples; 1.2 Hadamard matrices and designs; 1.3 Projective geometries; 1.4 t-designs; 1.5 Dembowski-Wagner Theorem; Problems; Supplementary Problems: Algebraic geometry; Notes; CHAPTER 2. AN ALGEBRAIC APPROACH; 2.1 Existence criteria; 2.2 The code of a symmetric design; 2.3 The module of a symmetric design; Problems; Notes; CHAPTER 3. AUTOMORPHISMS; 3.1 Fixed points and blocks; 3.2 Doubly-transitive symmetric designs; 3.3 Automorphisms of prime order 
505 8 |a 3.4 Counting orbitsProblems; Supplementary Problems: Eigenvalue techniques; Notes; CHAPTER 4. DIFFERENCE SETS; 4.1 Introduction and examples; 4.2 Abelian difference sets; 4.3 Contracting difference sets; 4.4 G-matrices; 4.5 Difference sets with multiplier -1; 4.6 Cyclic groups are special; 4.7 More on cyclic groups; 4.8 Further results; Problems; Notes; CHAPTER 5. MULTIPLIER THEOREMS; 5.1 The automorphism theorem; 5.2 Contracted automorphism theorem; 5.3 Blocks fixed by multipliers; 5.4 Further multiplier theorems; 5.5 Still further multiplier theorems; Problems; Notes 
505 8 |a CHAPTER 6. OPEN QUESTIONS6.1 Existence; 6.2 Cyclic Sylow subgroups; 6.3 Cyclic projective planes; 6.4 Multiplier theorems; 6.5 Tables; APPENDIX; A. Permutation Groups; B. Bilinear and Quadratic Forms; C. Invariant Factors; D. Representation Theory; E. Cyclotomic Fields; F. P-adic Numbers; REFERENCES; INDEX 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Combinatorial designs and configurations. 
650 6 |a Configurations et schémas combinatoires. 
650 7 |a MATHEMATICS  |x Combinatorics.  |2 bisacsh 
650 7 |a Combinatorial designs and configurations  |2 fast 
650 7 |a Symmetriegruppe  |2 gnd 
650 7 |a Symmetrische Gruppe  |2 gnd 
650 7 |a Configurations et schémas combinatoires.  |2 ram 
776 0 8 |i Print version:  |a Lander, Eric S.  |t Symmetric designs.  |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1983  |z 052128693X  |w (DLC) 82009705  |w (OCoLC)8553535 
830 0 |a London Mathematical Society lecture note series ;  |v 74. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552454  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10455646 
938 |a EBSCOhost  |b EBSC  |n 552454 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154487 
938 |a YBP Library Services  |b YANK  |n 10407374 
994 |a 92  |b IZTAP