|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn839301818 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130415s1981 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d UAB
|d OCLCQ
|d VTS
|d REC
|d STF
|d M8D
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 715185719
|
020 |
|
|
|a 9781107361096
|q (electronic bk.)
|
020 |
|
|
|a 1107361095
|q (electronic bk.)
|
020 |
|
|
|a 9780511662706
|q (e-book)
|
020 |
|
|
|a 051166270X
|q (e-book)
|
020 |
|
|
|z 0521284244
|
020 |
|
|
|z 9780521284240
|
029 |
1 |
|
|a DEBBG
|b BV043064438
|
029 |
1 |
|
|a DEBSZ
|b 421266171
|
029 |
1 |
|
|a GBVCP
|b 804552576
|
035 |
|
|
|a (OCoLC)839301818
|z (OCoLC)715185719
|
050 |
|
4 |
|a QA303
|b .B35 1981eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515
|2 22
|
084 |
|
|
|a 31.61
|2 bcl
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Baues, Hans J.,
|d 1943-
|
245 |
1 |
0 |
|a Commutator calculus and groups of homotopy classes /
|c Hans Joachim Baues.
|
260 |
|
|
|a Cambridge [Cambridgeshire] ;
|a New York :
|b Cambridge University Press,
|c 1981.
|
300 |
|
|
|a 1 online resource (160 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series,
|x 0076-0552 ;
|v 50
|
504 |
|
|
|a Includes bibliographical references (pages 156-158) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a pt. A. Homotopy operations, nilpotent group theory and nilpotent Lie algebra theory -- pt. B. Homotopy theory over a subring R of the rationals Q with 1/2, 1/3 [mathematical symbol] R.
|
520 |
|
|
|a A fundamental problem of algebraic topology is the classification of homotopy types and homotopy classes of maps. In this work the author extends results of rational homotopy theory to a subring of the rationale. The methods of proof employ classical commutator calculus of nilpotent group and Lie algebra theory and rely on an extensive and systematic study of the algebraic properties of the classical homotopy operations (composition and addition of maps, smash products, Whitehead products and higher order James-Hopi invariants). The account is essentially self-contained and should be accessible to non-specialists and graduate students with some background in algebraic topology and homotopy theory.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Calculus.
|
650 |
|
0 |
|a Homotopy theory.
|
650 |
|
6 |
|a Calcul infinitésimal.
|
650 |
|
6 |
|a Homotopie.
|
650 |
|
7 |
|a calculus.
|2 aat
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Calculus
|2 fast
|
650 |
|
7 |
|a Homotopy theory
|2 fast
|
650 |
|
7 |
|a Homotopie.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Baues, Hans J., 1943-
|t Commutator calculus and groups of homotopy classes.
|d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1981
|z 0521284244
|w (DLC) 81010142
|w (OCoLC)7738523
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 50.
|x 0076-0552
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552507
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10455647
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552507
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10407364
|
994 |
|
|
|a 92
|b IZTAP
|