Cargando…

Commutator calculus and groups of homotopy classes /

A fundamental problem of algebraic topology is the classification of homotopy types and homotopy classes of maps. In this work the author extends results of rational homotopy theory to a subring of the rationale. The methods of proof employ classical commutator calculus of nilpotent group and Lie al...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Baues, Hans J., 1943-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1981.
Colección:London Mathematical Society lecture note series ; 50.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn839301818
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130415s1981 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d REC  |d STF  |d M8D  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 715185719 
020 |a 9781107361096  |q (electronic bk.) 
020 |a 1107361095  |q (electronic bk.) 
020 |a 9780511662706  |q (e-book) 
020 |a 051166270X  |q (e-book) 
020 |z 0521284244 
020 |z 9780521284240 
029 1 |a DEBBG  |b BV043064438 
029 1 |a DEBSZ  |b 421266171 
029 1 |a GBVCP  |b 804552576 
035 |a (OCoLC)839301818  |z (OCoLC)715185719 
050 4 |a QA303  |b .B35 1981eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515  |2 22 
084 |a 31.61  |2 bcl 
049 |a UAMI 
100 1 |a Baues, Hans J.,  |d 1943- 
245 1 0 |a Commutator calculus and groups of homotopy classes /  |c Hans Joachim Baues. 
260 |a Cambridge [Cambridgeshire] ;  |a New York :  |b Cambridge University Press,  |c 1981. 
300 |a 1 online resource (160 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series,  |x 0076-0552 ;  |v 50 
504 |a Includes bibliographical references (pages 156-158) and index. 
588 0 |a Print version record. 
505 0 |a pt. A. Homotopy operations, nilpotent group theory and nilpotent Lie algebra theory -- pt. B. Homotopy theory over a subring R of the rationals Q with 1/2, 1/3 [mathematical symbol] R. 
520 |a A fundamental problem of algebraic topology is the classification of homotopy types and homotopy classes of maps. In this work the author extends results of rational homotopy theory to a subring of the rationale. The methods of proof employ classical commutator calculus of nilpotent group and Lie algebra theory and rely on an extensive and systematic study of the algebraic properties of the classical homotopy operations (composition and addition of maps, smash products, Whitehead products and higher order James-Hopi invariants). The account is essentially self-contained and should be accessible to non-specialists and graduate students with some background in algebraic topology and homotopy theory. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Calculus. 
650 0 |a Homotopy theory. 
650 6 |a Calcul infinitésimal. 
650 6 |a Homotopie. 
650 7 |a calculus.  |2 aat 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Calculus  |2 fast 
650 7 |a Homotopy theory  |2 fast 
650 7 |a Homotopie.  |2 ram 
776 0 8 |i Print version:  |a Baues, Hans J., 1943-  |t Commutator calculus and groups of homotopy classes.  |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1981  |z 0521284244  |w (DLC) 81010142  |w (OCoLC)7738523 
830 0 |a London Mathematical Society lecture note series ;  |v 50.  |x 0076-0552 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552507  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10455647 
938 |a EBSCOhost  |b EBSC  |n 552507 
938 |a YBP Library Services  |b YANK  |n 10407364 
994 |a 92  |b IZTAP