|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
EBSCO_ocn837375893 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130409s1997 enk o 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d AUD
|d OCLCO
|d TEF
|d OCLCO
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d VTS
|d OTZ
|d AU@
|d REC
|d STF
|d M8D
|d OCLCQ
|d LUN
|d AJS
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 776972557
|a 1167087130
|
020 |
|
|
|a 9781107362581
|q (electronic bk.)
|
020 |
|
|
|a 110736258X
|q (electronic bk.)
|
020 |
|
|
|a 9780511666124
|q (ebook)
|
020 |
|
|
|a 0511666128
|q (ebook)
|
020 |
|
|
|a 9780521596411
|q (paperback)
|
020 |
|
|
|a 0521596416
|q (paperback)
|
029 |
1 |
|
|a AU@
|b 000052939863
|
029 |
1 |
|
|a AU@
|b 000062616673
|
029 |
1 |
|
|a DEBBG
|b BV043120487
|
029 |
1 |
|
|a DEBSZ
|b 421267062
|
029 |
1 |
|
|a GBVCP
|b 804541620
|
035 |
|
|
|a (OCoLC)837375893
|z (OCoLC)776972557
|z (OCoLC)1167087130
|
050 |
|
4 |
|a QA564
|
072 |
|
7 |
|a MAT
|x 012010
|2 bisacsh
|
082 |
0 |
4 |
|a 516.3/5
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Geometric Galois Actions.
|n Volume 2.
|p The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups. /
|c edited by Leila Schneps, Pierre Lochak.
|
246 |
3 |
0 |
|a Inverse Galois Problem, Moduli Spaces and Mapping Class group
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 1997.
|
300 |
|
|
|a 1 online resource (360 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society Lecture Note Series ;
|v no. 243
|
500 |
|
|
|a Title from PDF title page (viewed on Apr 9, 2013).
|
500 |
|
|
|a Title from publishers bibliographic system (viewed on 22 Dec 2011).
|
520 |
|
|
|a This book surveys progress in the domains described in the hitherto unpublished manuscript 'Esquisse d'un Programme' (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest amongst workers in algebraic geometry, number theory, algebra and topology.
|
505 |
0 |
|
|a Cover -- Title -- Copyright -- Contents -- Introduction -- Abstracts of the talks -- Short Courses -- Individual talks -- Evening seminar on Teichmiiller and moduli space. -- Part I. Dessins d'enfants -- Unicellular Cartography and Galois Orbits of Plane Trees -- 0. Introduction -- 1. Belyi theorem for unicellular dessins -- 2. Edge rotation groups of unicellular dessins -- 3. Combinatorial structures help to see the edge rotation groups -- 4. Generalized Chebyshev polynomials of cartographically special trees -- References -- Galois Groups, Monodromy Groups and Cartographic Groups.
|
505 |
8 |
|
|a 0. Introduction -- 1. The absolute Galois group -- 2. Belyfs Theorem -- 3. Belyt functions and dessins -- 4. Belyi pairs and permutations -- 5. Belyi's Theorem and uniformisation -- 6. Plane trees and Shabat polynomials -- 7. Examples of plane trees and their groups -- Appendix -- Permutation techniques for coset representations of modular subgroups -- 1. Introduction -- 2. Identifying congruence subgroups -- 3. Enlarging subgroups -- 4. Remarks and acknowledgements -- References -- Dessins d'enfants en genre 1 -- 0. Introduction. -- 1. Un exemple parametrique.
|
505 |
8 |
|
|a 2. Dessins en genre 1, points de torsion et formes modulaires. -- 3. Dessins d'enfants en genre 1 et isogenies. Un exemple. -- 4 Remerciements. -- References -- Part II. The Inverse Galois Problem -- The Regular Inverse Galois Problem over Large Fields -- 1. Introduction. -- 2. Conjectures. -- 3. Results. -- 4 Main arguments. -- References -- The Symplectic Braid Group and Galois Realizations -- 0. Introduction -- 1. Artin's braid group -- 2. Coverings -- 3. Varieties associated with the Coxeter group of type Ct -- 4. Choosing the group G.
|
505 |
8 |
|
|a 5. Generators of the symplectic braid group -- References -- Applying Modular Towers to the Inverse Galois Problem -- 0. Introduction to the main problem. -- 1. Precise versions of the main conjecture. -- 2. Construction of universal Prattini covers. -- 3. Progress on the case A5 and C = C3r. -- 4.A. Lifting elements of order p. -- Appendix I. Nielsen classes and Modular Towers. -- Appendix II. Equivalence of covers of the sphere -- References -- Part III. Galois actions and mapping class groups -- Galois group GQ, Singularity E7, and Moduli M3 -- 0. Introduction -- 1. E7 and M3.
|
505 |
8 |
|
|a 2. Tangential morphisms -- 3. Galois action on Artin groups -- References -- Monodromy of Iterated Integrals and Non-abelian Unipotent Periods -- 0. Introduction. -- 1. Canonical connection with logarithmic singularities. -- 2. The Gauss-Manin connection associated with the morphism -- 3. Homotopy relative tangential base points on P1 (C)\{a1 ..., an+1}. -- 4. Generators of 7Ti(P1(C)\{a1 ..., an+1}, x). -- 5. Monodromy of iterated integrals on P1(C)\{a1 ..., an+1} -- 6. Calculations. -- 7. Configuration spaces. -- 8. The Drinfeld-Ihara Z/5-cycle relation.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
0 |
|a Moduli theory.
|
650 |
|
6 |
|a Géométrie algébrique.
|
650 |
|
6 |
|a Théorie des modules.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Algebraic.
|2 bisacsh
|
650 |
|
7 |
|a Geometry, Algebraic.
|2 fast
|0 (OCoLC)fst00940902
|
650 |
|
7 |
|a Moduli theory.
|2 fast
|0 (OCoLC)fst01024524
|
700 |
1 |
|
|a Schneps, Leila.
|
700 |
1 |
|
|a Lochak, P.
|q (Pierre)
|
776 |
0 |
8 |
|i Print version:
|z 9780521596411
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v no. 243.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552418
|z Texto completo
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552418
|
994 |
|
|
|a 92
|b IZTAP
|