Cargando…

The algebraic characterization of geometric 4-manifolds /

This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel-Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hillman, Jonathan A. (Jonathan Arthur), 1947-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 1994.
Colección:London Mathematical Society lecture note series ; 198.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn836871773
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130408s1994 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d REC  |d STF  |d M8D  |d INARC  |d SFB  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 708568810  |a 1277063865 
020 |a 9781107362086  |q (electronic bk.) 
020 |a 1107362083  |q (electronic bk.) 
020 |a 9780511526350  |q (e-book) 
020 |a 0511526350 
020 |z 0521467780 
020 |z 9780521467780 
029 1 |a DEBBG  |b BV043070168 
029 1 |a DEBSZ  |b 421266260 
029 1 |a GBVCP  |b 804536112 
035 |a (OCoLC)836871773  |z (OCoLC)708568810  |z (OCoLC)1277063865 
050 4 |a QA613.2  |b .H55 1994eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514  |2 22 
084 |a 31.65  |2 bcl 
049 |a UAMI 
100 1 |a Hillman, Jonathan A.  |q (Jonathan Arthur),  |d 1947- 
245 1 4 |a The algebraic characterization of geometric 4-manifolds /  |c J.A. Hillman. 
260 |a Cambridge :  |b Cambridge University Press,  |c 1994. 
300 |a 1 online resource (ix, 170 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 198 
504 |a Includes bibliographical reference (pages 160-168) and index. 
588 0 |a Print version record. 
520 |a This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel-Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces. This book is essential reading for anyone interested in low-dimensional topology. 
505 0 |a Cover; Title; Copyright; Contents; Preface; I Algebraic Preliminaries; 1. Group theoretic notation and terminology; 2. Elementary amenable groups and Hirsch length; 3. Modules and finiteness conditions; 4. The SIBN property and safe extensions of group rings; 5. Ends and cohomology with free coefficients; II General results on the homotopy type of 4-manifolds; 1. Equivariant (co)homology and Poincare duality; 2. Homotopy types.; 3. Finitely dominated covering spaces.; 4. Spherical universal covering spaces; 5. Minimizing the Euler characteristic; III Mapping tori and circle bundles 
505 8 |a 3. Mapping tori of self homeomorphisms of E3-manifolds4. Mapping tori of self homeomorphisms of Nil3-manifolds; 5. Mapping tori of self homeomorphisms of Sol3-manifolds; 6. Other aspherical product geometries; 7. Semisimple geometries; VII Manifolds covered by S2 x R2; 1. Virtually geometric manifolds; 2. Fundamental groups of S2 x E2-manifolds; 3. The homotopy type; 4. Some remarks on the homeomorphism types; VIII Manifolds covered by S3 x R; 1. Covering spaces; 2. The maximal finite normal subgroup; 3. Extensions of D; 4. Realization of the groups; IX Geometries with compact models 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Four-manifolds (Topology) 
650 0 |a Homotopy theory. 
650 6 |a Variétés topologiques à 4 dimensions. 
650 6 |a Homotopie. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Four-manifolds (Topology)  |2 fast  |0 (OCoLC)fst00933389 
650 7 |a Homotopy theory.  |2 fast  |0 (OCoLC)fst00959852 
650 1 7 |a Manifolds.  |2 gtt 
650 7 |a Variétés topologiques à 4 dimensions.  |2 ram 
650 7 |a Homotopie.  |2 ram 
653 0 |a Algebraic topology 
776 0 8 |i Print version:  |a Hillman, Jonathan A. (Jonathan Arthur), 1947-  |t Algebraic characterization of geometric 4-manifolds.  |d Cambridge : Cambridge University Press, 1994  |z 0521467780  |w (DLC) 94231096  |w (OCoLC)29951147 
830 0 |a London Mathematical Society lecture note series ;  |v 198. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552498  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13421988 
938 |a ebrary  |b EBRY  |n ebr10447547 
938 |a EBSCOhost  |b EBSC  |n 552498 
938 |a Internet Archive  |b INAR  |n algebraiccharact0000hill 
938 |a YBP Library Services  |b YANK  |n 10405633 
994 |a 92  |b IZTAP