Cargando…

Symplectic geometry /

This volume is based on lectures given at a workshop and conference on symplectic geometry at the University of Warwick in August 1990. The area of symplectic geometry has developed rapidly in the past ten years with major new discoveries that were motivated by and have provided links with many othe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Salamon, D. (Dietmar)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 1993.
Colección:London Mathematical Society lecture note series ; 192.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn836871758
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130408s1993 enka ob 000 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d REC  |d STF  |d M8D  |d UKAHL  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 708568859  |a 1274003536 
020 |a 9781107361928  |q (electronic bk.) 
020 |a 1107361923  |q (electronic bk.) 
020 |a 1139884867 
020 |a 9781139884860 
020 |a 1107366836 
020 |a 9781107366831 
020 |a 1107371503 
020 |a 9781107371507 
020 |a 0511957424 
020 |a 9780511957420 
020 |a 0511526342 
020 |a 9780511526343 
020 |z 0521446996 
020 |z 9780521446990 
029 1 |a DEBBG  |b BV043070175 
029 1 |a DEBSZ  |b 421266287 
029 1 |a GBVCP  |b 804536104 
035 |a (OCoLC)836871758  |z (OCoLC)708568859  |z (OCoLC)1274003536 
050 4 |a QA649  |b .S953 1993eb 
072 7 |a MAT  |x 012030  |2 bisacsh 
082 0 4 |a 516.3/6  |2 22 
084 |a 31.55  |2 bcl 
049 |a UAMI 
245 0 0 |a Symplectic geometry /  |c edited by Dietmar Salamon. 
260 |a Cambridge :  |b Cambridge University Press,  |c 1993. 
300 |a 1 online resource (236 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 192 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
520 |a This volume is based on lectures given at a workshop and conference on symplectic geometry at the University of Warwick in August 1990. The area of symplectic geometry has developed rapidly in the past ten years with major new discoveries that were motivated by and have provided links with many other subjects such as dynamical systems, topology, gauge theory, mathematical physics and singularity theory. The conference brought together a number of leading experts in these areas of mathematics. The contributions to this volume reflect the richness of the subject and include expository papers as well as original research. They will be an essential source for all research mathematicians in symplectic geometry. 
505 0 |a Cover; Title; Copyright; Contents; List of Participants; Introduction; References; Acknowledgements; About this volume; Short description; A variational interpretation of Melnikov's function and exponentially small separatrix splitting; 1. Introduction; 2. A variational account of the melnikov function; 3. Rapidly oscillating perturbations; 4. Separatrix splitting; 5. Holomorphic contraction mapping lemma; 6. Proof of lemma 4.1; 7. Proof of lemma 4.5; 8. The forced duffing equation; References; Global Darboux theorems and a linearization problem 
505 8 |a 1 Submanifolds of Kähler manifolds of non-positive curvature2 The local structure of a Liouville vector field; References; Complex cobordism, Ashtekar's equations and diffeomorphisms; 1. Introduction; 2. Diffeomorphisms of a 3-manifold and complex cobordisms; 3. Nahm's equations, hyperkahler metrics and other topics.; References; Instanton homology and symplectic fixed points; 1 Introduction; 2 Instanton homology; 3 Floer homology for symplectic fixed points; 4 Flat connections over a Riemann surface; 5 Mapping cylinders; 6 Instantons and holomorphic curves; 7 Perturbations 
505 8 |a A Proof of Lemma 2.3References; An energy-capacity inequality for the symplectic holonomy of hypersurfaces flat at infinity; 1 Introduction; 2 Functional analysis of the action integral; 3 A weak ps'-condition for a class of functionals; 4 Some estimates for max-min-levels; 5 Proof of the main result; References; Caustics Dk at points of interface between two media; 1 Lagrangian manifolds at points of refraction; 2 Initial data for propogating of waves in the second medium; 3 Lagrangian mappings with fixed boundary conditions; References; Examples of singular reduction; Introduction 
505 8 |a 1 A simple example1.1 Digression: Smooth structures on reduced spaces; 1.2 The Reduced space (T*R2)0 as an orbifold; 1.3 Reduction via Invariants; 2 A summary of the general theory; 2.1 Stratifications; 2.2 Hamiltonian mechanics on a stratified symplectic space; 2.3 Orbit types; 2.4 The closure of a coadjoint orbit as a stratified symplectictic space; 3 Reduction of cotangent bundles; 3.1 The cotangent bundle of a quotient variety; 3.2 Cross-sections; 3.3 Row, row, row your boat; 3.4 Reduction of the cotangent bundle of a symmetric space; 4 Poisson embeddings of reduced spaces 
505 8 |a 5 Reduced space at angular momentum zero for n particles in d-spaceReferences; Remarks on the uniqueness of symplectic blowing up; 1 Introduction; 2 Blowing up and down in the symplecticcategory; 3 Uniqueness of blow ups of CP2; (3.6) Embeddings of more than two balls.; References; The 4-dimensional symplectic camel and related results; 1 Introduction; 2 Basic definitions; 3 Properties of j-holomorphic a-discs; 4 Filling the sphere; 5 The camel theorem; 6 Embeddings of balls; References; Differential forms and connections adapted to a contact structure, after M. Rumin 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Symplectic geometry. 
650 6 |a Géométrie symplectique. 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a Symplectic geometry.  |2 fast  |0 (OCoLC)fst01140989 
650 1 7 |a Symplectische ruimten.  |2 gtt 
650 1 7 |a Hamilton-vergelijkingen.  |2 gtt 
650 7 |a Géométrie différentielle.  |2 ram 
650 7 |a Variétés symplectiques.  |2 ram 
700 1 |a Salamon, D.  |q (Dietmar) 
776 0 8 |i Print version:  |t Symplectic geometry.  |d Cambridge : Cambridge University Press, 1993  |z 0521446996  |w (DLC) 94151805  |w (OCoLC)29951149 
830 0 |a London Mathematical Society lecture note series ;  |v 192. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552496  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385336 
938 |a ebrary  |b EBRY  |n ebr10447572 
938 |a EBSCOhost  |b EBSC  |n 552496 
938 |a YBP Library Services  |b YANK  |n 3275134 
938 |a YBP Library Services  |b YANK  |n 10370221 
938 |a YBP Library Services  |b YANK  |n 10405621 
938 |a YBP Library Services  |b YANK  |n 10689705 
938 |a YBP Library Services  |b YANK  |n 10370344 
994 |a 92  |b IZTAP